Naturwissenschaftlicher Verein für das Fürstentum Lüneburg von 1851 e. V.

Jahrbuch

Band 49

Herausgeber:

Andreas Fichtner, Werner Härdtle & Johannes Prüter

Satz und Lektorat: Sabine Arendt, lektorat@sabinearendt.org

Titelfoto: Werner Härdtle

Designvorlagen: borowiakzieheKG

Druck: Bartels Druck GmbH, Lüneburg

© 2024

Naturwissenschaftlicher Verein für das Fürstentum Lüneburg von 1851 e. V. Wandrahmstraße 10 21335 Lüneburg http://www.naturwissenschaftlicher-verein-lueneburg.de

ISSN: 0340-4374

Inhalt

Vorwort	5
Nachruf Henry Makowski	7
Antal Festetics	
Videobotschaft an Henry Makowski (Lüneburg) am 11. Juni 2022	15
Frank Allmer	
Vom Nistkastenvogelschutz zum Naturschutzmanagement	19
Hans-Werner Frohn & Jürgen Rosebrock	
Hans Klose und Max Hilzheimer – Wegbereiter eines modernen Naturschutzes in Ballungsräumen	25
Hansjörg Küster†	
Landschaftsbilder aus Menschenhand – Vortrag zu Ehren von Henry Makowski am 11. Juni 2022	35
Wolfgang Schacht	
Die Käfer der Holmer Teiche im Naturschutzgebiet Lüneburger Heide	45
Hannah Markant	
Vergleichende Untersuchung zur Diversität von Dungkäfern auf Weiden mit antiparasitisch behandelten und unbehandelten Rindern im Biosphärenreservat Niedersächsische Elbtalaue	93

Wolfram Eckloff

Untersuchungen zum Straßenbau und zur Orientierung der Glänzendschwarzen Holzameise <i>Lasius fuliginosus</i> (LATR. 1798) (Formicidae, Hymenoptera)	111
Wolfram Eckloff & Barbara Eckloff	
Untersuchungen zur Aktivierung der Roten Waldameisen nach der Winterpause (<i>Formica polyctena</i> Först., Formicidae, Hymenoptera)	127
Ortrun Schwarzer	
Die Nelken-Sommerwurz (Orobanche caryopyllacea Sm.) im Elbvorland bei Bleckede – Schutzbemühungen für eine der seltensten Pflanzenarten Niedersachsens	151
Studienfahrten 2018 bis 2020	177
Vorträge und Kolloquien in den Wintersemestern	
2018/19 his 2020/21	179

Vorwort

Den vorliegenden Band 49 unseres traditionsreichen Jahrbuchs widmet der Naturwissenschaftliche Verein Lüneburg seinem langjährigen Ehrenmitglied Henry Makowski, der am 6. April 2023 in seinem 96. Lebensjahr gestorben ist.

In dankbarer Anerkennung seiner Verdienste als Vorsitzender unseres Vereins von 1977 bis 1996 und als Unterstützer und Förderer in verschiedensten Zusammenhängen haben wir ihm zu Ehren kurz vor seinem 95. Geburtstag – am 11. Juni 2022 – im Museum Lüneburg ein kleines Festsymposium veranstaltet. Ein Nachruf und die Vorträge dieser Veranstaltung sind in diesem Band zusammengestellt.

Die Fachbeiträge im Weiteren haben einen entomologischen Schwerpunkt, gewähren interessante Einblicke in die Biologie, Faunistik und Gefährdung unserer heimischen Insektenwelt. Vielfalt und Reichtum dieser Artengruppe, ihre Anpassung an die unterschiedlichsten Lebensräume, ihre z. T. spektakulären Sinnesleistungen sind faszinierend, ihre Funktionen in fast allen terrestrischen Ökosystemen der Erde unerlässlich. Die Gefährdung dieser Artengruppe durch systematisch unbedachten Umgang mit unserer Kulturlandschaft wurde uns in jüngerer Zeit drastisch vor Augen geführt. So ist jede Studie zu den Insekten in unserer Region immer auch eine Mahnung, diese faszinierende Fülle an Fähigkeiten und Leistungen zu erkennen und wertzuschätzen.

Neben der gedruckten Fassung liegt das Jahrbuch des Naturwissenschaftlichen Vereins Lüneburg inzwischen auch in digitaler Form vor. Seit dem Band 46 sind die Jahrbücher insgesamt sowie alle Einzelbeiträge auf der Homepage unseres Vereins unter www.naturwissenschaftlicher-verein-lueneburg.de als pdf-Dateien verfügbar. Dort findet sich zudem auch eine vollständige tabellarische Zusammenstellung der Fachveröffentlichungen aus den Jahrbüchern des Vereins seit dem im Jahre 1865 erschienenen ersten Band.

Die Herausgeber

Die Käfer der Holmer Teiche im Naturschutzgebiet Lüneburger Heide

Wolfgang Schacht

Schlüsselwörter:

Artenvielfalt, Coleoptera, Insekten, Käfer, Lüneburger Heide, Naturschutzgebiet

Zusammenfassung

Das Gelände der Holmer Teiche umfasst eine Fläche von 70 Hektar innerhalb des niedersächsischen Naturschutzgebietes Lüneburger Heide. Es ist geprägt von strukturreichen Ufer- und Verlandungszonen, einer nur noch selten anzutreffenden Teichbodenflora und totholzreichen Gehölzen. Im Rahmen von Untersuchungen der Käferfauna ab dem Jahr 1986, verstärkt durch intensive Aufnahmen mit einem breiten Methodenspektrum in den Jahren 2018 bis 2022, traten 668 verschiedene Käferarten auf. Auffallend war, dass neben der dominanten Zahl von Bewohnern verschiedenster Feuchtbiotope und Wasserkäfern ebenfalls zahlreiche Vertreter holznutzender Arten vorkamen. Eine unerwartet hohe Anzahl von 231 Arten ist in Nordniedersachsen als selten bis extrem selten eingestuft. Den überwiegenden Teil dieser Gruppe stellen die hygrophilen Käfer. Wasser- und die Holzkäfer steuern allerdings ebenfalls sehr seltene Arten bei. Sowohl die Gesamtzahl aller Käfer als auch die Zahl seltener Arten verdeutlicht die enorme Bedeutung der gebotenen Habitate für den Erhalt bedrohter Insekten. 126 der nachgewiesenen Käferarten befinden sich auf Roten Listen in Deutschland oder Niedersachsen gefährdeter Tiere, davon gelten 28 als besonders stark gefährdet.

Keywords:

Beetles, biodiversity, Coleoptera, insects, Lüneburg Heath, nature reserve

Abstract

The area of the Holmer Teiche covers an area of 70 hectares within the Lüneburg Heath nature reserve in Lower Saxony. It is characterized by structurally rich bank

and silting zones, a pond floor flora that is only rarely encountered and woody plants rich in dead wood. In the course of investigations of the beetle fauna from 1986, increased by intensive recordings using a wide range of methods in the years 2018 to 2022, 668 different beetle species were found. It was striking that, in addition to the dominant number of inhabitants of various wet biotopes and water beetles, there were also numerous representatives of wood-using species. An unexpectedly high number of 231 species is classified as rare to extremely rare in northern Lower Saxony. The hygrophilous beetles make up the majority of this group. However, water beetles and wood beetles also contribute very rare species. Both the total number of all beetles and the number of rare species illustrate the enormous importance of the habitats provided for the conservation of endangered insects. 126 of the proven beetle species are on the red lists of endangered animals in Germany or Lower Saxony, 28 of which are considered to be particularly endangered.

Einleitung

Die im Naturschutzgebiet (NSG) Lüneburger Heide gelegenen Holmer Teiche mit einer Gesamtfläche von rund 70 Hektar zeichnen sich durch eine beeindruckende Vielfalt an Lebensräumen aus. Neben den bis heute bewirtschafteten Sommer- und Winterteichen (Abb. 1) bleiben einzelne Teiche dauerhaft bespannt. Einige aus der Nutzung gefallene Teiche befinden sich mit unterschiedlichsten Wasserständen seit vielen Jahren in fortgeschrittener natürlicher Sukzession. An Fließgewässern wird das Gebiet vom Weseler Bach durchströmt; den Nordrand des Gebietes bildet die Seeve, in die der Weseler Bach einmündet. Bedingt durch die Parzellierung in einzelne Zuchtteiche bestehen umfangreiche Uferstrukturen, teils mit Erlenund Weidengebüsch bestockt, in weiten Bereichen mit Röhrichten und artenreichem Uferbewuchs. Die im Sommer abgelassenen Winterteiche zeichnen sich durch eine reiche Teichbodenflora aus mit teils landes- und sogar bundesweiter Bedeutung (Müller 1997). Neben großflächigen Beständen des Mittleren Sonnentaus (*Drosera intermedia*) sind hier unter anderen der Fadenenzian (Cicendia filiformis) oder der Zwerglein (Radiola linoides) von Bedeutung. Die großenteils frei besonnten, aufgeschütteten sandigen Dämme zwischen den Teichen bilden kleinere Trockenrasenstrukturen aus. Einzelne oder in Gruppen stehende Alteichen und Birken mit Totholzanteilen ergänzen das Bild.

Aufgrund dieser ungewöhnlichen Habitatvielfalt, insbesondere aber auch der langen Habitatkontinuität von mehr als 100 Jahren (Müller 1997) sowie der

Abb. 1: Im Sommer weitgehend trockengefallener Winterteich mit umfangreichen Uferstrukturen und Teichbodengesellschaft (Foto: W. Schacht)

Lage in einem Naturschutzgebiet, bietet das Areal der Holmer Teiche einer großen Zahl an selten gewordenen und in ihrer Existenz bedrohten Käferarten ein Refugium. Hervorzuheben ist hier die Bedeutung andernorts selten gewordener Pflanzen, die den an sie gebundenen Insekten das notwendige Substrat bieten. Verschwinden die Wirtspflanzen derartiger Spezialisten müssen sie ebenfalls lokal, regional oder vollständig aussterben.

Vereinzelte erste koleopterologische Exkursionen in das gesperrte, nur mit begründeten Ausnahmegenehmigungen zugängliche Gebiet erfolgten ab dem Jahr 1986 durch den Verein für naturwissenschaftliche Heimatforschung zu Hamburg e. V. Bis 2017 lagen Nachweise von 273 Käferarten vor. Intensivere Untersuchungen folgten durch den Autor in den Jahren 2018 und 2019. Der erfasste Bestand erhöhte sich deutlich auf 514 Arten (Schacht 2020). Dabei zeigte sich, dass die Holmer Teiche eines der artenreichsten Teilareale des gesamten NSG Lüneburger Heide bilden.

Aufgrund der in den bis 2019 durchgeführten Untersuchungen gefundenen zusätzlichen zahlreichen seltenen und

bedrohten Käferarten erfolgten in den Jahren 2020 bis 2022 weitere Aufnahmen, insbesondere durch Absuchen der Vegetation und durch Lichtfänge. Die Zahl der insgesamt bekannten Arten erhöhte sich nochmals um 154 auf den aktuellen Stand von 668. Die erhobenen Daten sind in online zugänglichen Datenbanken dokumentiert (Gürlich & Tolasch 2022, Bleich et al. 2022). Die zur genauen Determination und für spätere Überprüfungen präparierten Belegexemplare sind bereits in das Eigentum des Centrums für Naturkunde (CeNak) Hamburg übergegangen und stehen somit dauerhaft zur Verfügung.

2 Gesamtartenzahl

Für die Bewertung der großen Zahl von Käferarten sind Kategorisierungen unerlässlich. Zum einen ist eine Analyse hinsichtlich der übergeordneten Häufigkeiten sinnvoll, die eine Konzentration auf aussagekräftige seltene Arten erlaubt. Zum anderen gestattet die Bildung von Gruppen nach bevorzugten Biotopen die Möglichkeit, Einblicke in deren Ausprägung und Wertigkeit zu erlangen. Eine Kombination beider Selektionsmöglichkeiten gestattet besonders belastbare Aussagen.

2.1 Seltene Arten

Aufgrund der langjährigen koleopterologischen Untersuchung Nordniedersachsens liegen für alle vorkommenden Käferarten umfassende Erkenntnisse zur Verbreitung und Häufigkeit vor. Für jede Art besteht aufgrund mit Nachweisen belegter Rasterfelder die Zuordnung zu einer Häufigkeitsklasse, von "extrem selten" bis "sehr häufig" (GÜRLICH et al. 2017, SCHACHT 2020). Diese Daten erlauben eine erste summarische Bewertung der zahlreichen gefundenen Arten. Abb. 2 zeigt dazu die resultierende Verteilung auf die Häufigkeitsklassen.

Die Zahl von zusammen 231 als "selten" bis "extrem selten" eingestuften Arten lässt bereits auf dieser Ebene die hohe Qualität der gebotenen Lebensräume erkennen. Die 123 "häufigen" und "sehr häufigen" Arten gehören zu den weit verbreiteten, überwiegend in verschiedensten Biotopen anzutreffenden und besitzen höchstens summarische Bedeutung. Sie bleiben bei den folgenden Betrachtungen unberücksichtigt. Anhang sind mit weiteren Attributen lediglich die verbleibenden 545 selteneren Arten aufgeführt; im besonderen Focus stehen die "sehr seltenen" und "extrem seltenen" Arten.

2.2 Verteilung der Arten auf Lebensräume

Die überwiegende Zahl der Käfer stellt besondere Anforderungen an ihren Entwicklungs- und Lebensraum. Nur bei Vorhandensein geeigneter Strukturen und Rahmenbedingungen wie hoher Wasserqualität, Anwesenheit spezieller

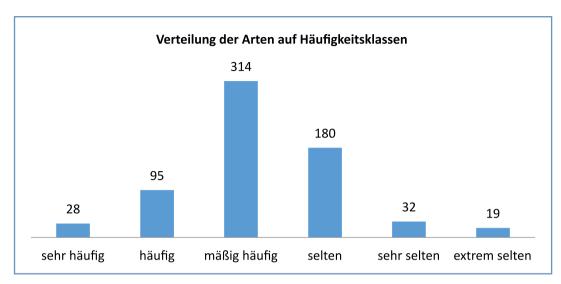


Abb. 2: Zuordnung der auf dem Gebiet der Holmer Teiche gefundenen Käferarten zu den Häufigkeitseinstufungen im Niederelbegebiet (Gürlich et al. 2017)

Pflanzen und bestimmter Feuchtigkeitsoder Besonnungsgrade der Entwicklungssubstrate kann ein Überleben erfolgen. Daher lassen sich die meisten Arten
bestimmten Lebensräumen zuordnen.
Analog wie für alle Arten im NSG Lüneburger Heide (Schacht 2020) erfolgte daher die Einordnung jeder Art in ein
grobes Biotopcluster:

- Hygrophile Arten verschiedenster Uferstrukturen, sowohl feucht-sandiger oder schlammiger Flächen als auch Bewohner vertikaler Strukturen wie von Hochstaudenrieden und Röhrichten.
- Aquatische, verschiedenste Gewässer bewohnende Arten. Bei nicht vordergründig zuzuordnenden Käfern, die

- zum Beispiel im Sand des Uferbereichs leben, folgt die Zuordnung der Roten Liste Deutschlands (BFN 2016).
- Xylobionte Käfer, die zumindest für ein Entwicklungsstadium direkt oder indirekt an verholzte Strukturen oder deren Zerfallsstadien gebunden sind. Für diese Gruppe liegt eine konkrete Definition vor (Köhler 2000, 2010).
- Silvicole, oft epigäische Arten ohne xylobionte Eigenschaft, die von Wäldern gebotene Lebensräume besiedeln.
- Arten trockensandiger und voll besonnter trockenwarmer Standorte, also Arten die als psammo-, xero-, thermo- oder xerothermophil gelten. Diese werden im Folgenden als pxt-Arten zusammengefasst.

- Euryöke Arten, die sich aufgrund breiter ökologischer Potenz keiner der genannten Cluster zuordnen lassen; oftmals, beispielsweise durch Bindung an einzelne Pflanzengattungen, dennoch nicht häufig anzutreffen sind.
- Synanthrope Arten, die in der Regel in oder in der Nähe von anthropogenen Einrichtungen – oft weltweit, beispielsweise in Vorräten – auftreten, gelegentlich aber auch im Freiland. Sie werden oftmals bei Lichtfängen nachgewiesen und bleiben im Folgenden unberücksichtigt.

Im Anhang sind die den aufgeführten Arten zugehörigen Lebensräume aufgeführt. Abb. 3 gibt eine Übersicht über die Verteilung der 545 selteneren.

Die zahlenmäßige Dominanz der hygrophilen Käferarten spiegelt die vielfältigen Uferstrukturen. Eine ungewöhnlich große Zahl von Spezialisten findet hier geeigneten Lebensraum. Unerwartet für eine Teichanlage folgen nach den euryöken Arten als nächstgroße Gruppe die xylobionten Käfer. Auch diese Gilde bestätigt damit den Wert der eingangs erwähnten zugehörigen Habitate. Die relativ geringe Zahl an trockenwarme Bedingungen gebundener Käfer (pxt) überrascht dagegen nicht, da die entsprechenden Flächen nur kleinsträumig vorliegen. Das Gleiche gilt für die Waldarten. Auf den ersten Blick unerwartet ist dagegen die geringe Zahl aquatischer Käfer in einer so umfangreichen Teichanlage. Die Ursache liegt hier in einem gegenüber den anderen Gruppen grundsätzlich geringeren bestehenden Artenpool in Niedersachsen.

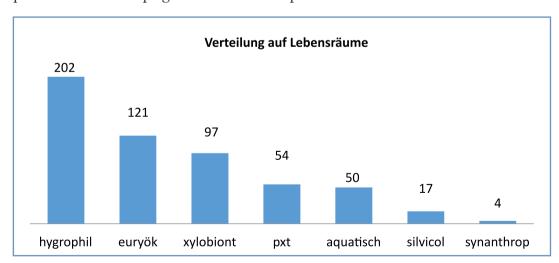


Abb. 3: Zuordnung der auf dem Gebiet der Holmer Teiche gefundenen selteneren Käferarten zu Biotopclustern (nach Schacht 2020)

3 Diskussion besonders bemerkenswerter Arten

Im Folgenden wird auf die einzelnen ökologischen Gruppen separat eingegangen. Dabei entfallen die Gruppen der xerothermophilen (pxt) und der silvicolen Arten, da sich trotz der 54 beziehungsweise 17 gefundenen Tiere darunter keine innerhalb des NSG besonders hervorzuhebende befinden.

Für die verbleibenden Gruppen erfolgt zunächst jeweils eine tabellarische Übersicht über die im Niederelbegebiet als "sehr selten" oder "extrem selten" eingestuften Vertreter mit vollständigem wissenschaftlichem Namen (bei weiteren Erwähnungen einzelner Arten im Text wird auf die Angabe des Autors verzichtet). Zusätzlich gekennzeichnet sind diejenigen Arten, die bereits in der Übersicht über alle Käfer des NSG vorgestellt wurden (Schacht 2020). Diese Arten werden hier nicht oder nur in gekürztem Umfang beschrieben.

Jede einzelne der auf dem Gebiet der Holmer Teiche vorkommenden "sehr seltenen" oder "extrem seltenen" Käferarten bezeugt die hohe Qualität der gebotenen Habitate. Die Gesamtzahl von 51 derartigen Arten auf einer Fläche von lediglich rund 70 Hektar ist ungewöhnlich und beeindruckend. Aufgrund der auch bei Konzentration auf diese Teilmenge verbleibende Zahl werden individuell jeweils nur einige wichtige Indikatorarten mit überregionaler oder

deutschlandweiter Bedeutung mit ihren speziellen Ansprüchen vorgestellt. Insbesondere soll anhand in ihrer Existenz bedrohter Arten beispielhaft die Wertigkeit der gebotenen Habitate herausgearbeitet werden.

3.1 Hygrophile Käfer

Von den in Abb. 2 gezeigten 51 "sehr seltenen" und "extrem seltenen" Käfern der Holmer Teiche entfällt mit 28 (55 %) der überwiegende Teil auf die hygrophilen. Diese Gruppe dominiert damit nicht nur bei der Gesamtartenzahl (Abb. 3), sondern ebenfalls bei den besonders seltenen Arten. Tab. 1 zeigt die Übersicht.

Der Laufkäfer Chlaenius tristis (Abb. 4) galt im gesamten Niederelbegebiet als verschollen, da letzte Funde aus dem Jahr 1972 resultierten. Erst 2018 gelang der erneute Nachweis eines Einzeltieres im Wendland (Schacht 2019a). 2021 konnte der Käfer, der verlandende Schilfzonen besiedelt (Trautner 2017), in Anzahl in den Holmer Teichen nachgewiesen werden. Es handelt sich derzeit damit um das einzige bekannte Vorkommen im Niederelbegebiet, für das der Nachweis einer Population vorliegt. Auch aus dem übrigen Niederachsen sind nur wenige weitere Funde bekannt (Bleich et al. 2022).

Von dem deutschlandweit sehr seltenen zu den Kurzflüglern gehörenden Palpenkäfer Pselaphaulax dresdensis (Abb. 5, links) liegen aus Niedersachsen nur wenige Funde

Tab. 1: Als "sehr selten" oder "extrem selten" eingestufte hygrophile Käfer der Holmer Teiche (fett: im Text individuell vorgestellt; *: bereits in Schacht 2020 aufgeführt)

Familie	Art
Laufkäfer (Carabidae)	Bembidion ruficolle (PANZER, 1796)*
Laufkäfer (Carabidae)	Bembidion tenellum Er., 1837
Laufkäfer (Carabidae)	Agonum lugens (Duft., 1812)*
Laufkäfer (Carabidae)	Chlaenius tristis (SCHALLER, 1783)
Laufkäfer (Carabidae)	Badister peltatus (PANZER, 1796)*
Stutzkäfer (Histeridae)	Hister helluo Truqui, 1852*
Kurzflügelkäfer (Staphylinidae)	Euconnus rutilipennis (Müll.Kunz, 1822)*
Kurzflügelkäfer (Staphylinidae)	Stenus palposus Zett., 1838*
Kurzflügelkäfer (Staphylinidae)	Pselaphaulax dresdensis (HERBST, 1791)*
Jochkäfer (Scirtidae)	Elodes tricuspis Nyholm, 1985*
Sägekäfer (Heteroceridae)	Heterocerus obsoletus Curtis, 1828*
Glanzkäfer (Nitidulidae)	Thymogethes gagathinus Er., 1845*
Schimmelkäfer (Cryptophagidae)	Telmatophilus schonherrii (Gyll., 1808)*
Blattkäfer (Chrysomeldiae)	Donacia simplex F., 1775
Blattkäfer (Chrysomeldiae)	Oulema septentrionis Weise, 1880*
Blattkäfer (Chrysomeldiae)	Aphthona lutescens (Gyll., 1808)*
Blattkäfer (Chrysomeldiae)	Longitarsus holsaticus (L., 1758)*
Blattkäfer (Chrysomeldiae)	Chaetocnema aerosa (Letz., 1847)*
Blattkäfer (Chrysomeldiae)	Dibolia occultans (Косн, 1803)*
Zwergrüssler (Nanophyidae)	Nanophyes brevis Boh., 1845*
Zwergrüssler (Nanophyidae)	Nanomimus circumscriptus (Aubé, 1864)*
Zwergrüssler (Nanophyidae)	Microon sahlbergi (C. SAHLB., 1835)*
Rüsselkäfer (Curculionidae)	Bagous puncticollis BOH., 1845*
Rüsselkäfer (Curculionidae)	Bagous glabrirostris (HERBST, 1795)*
Rüsselkäfer (Curculionidae)	Dorytomus majalis (PAYK., 1792)*
Rüsselkäfer (Curculionidae)	Acalyptus sericeus GYLL., 1835
Rüsselkäfer (Curculionidae)	Tachyerges pseudostigma (TEMP., 1982)*
Rüsselkäfer (Curculionidae)	Stenopelmus rufinasus Gyll., 1835*

vor. Aus dem Niederelbegebiet war er bis zum Nachweis dreier Tiere im Jahr 2019 an den Holmer Teichen unbekannt. 2021 traten weitere zwei Exemplare auf, sodass hier von einer stabilen Population ausgegangen werden kann, der aufgrund der deutschlandweiten Seltenheit des Käfers überregionale Bedeutung zukommt.

Abb. 4: links: einer der Fundorte des Laufkäfers Chlaenius tristis (Foto: W. Schacht), rechts: Habitus (Foto: O. Bleich).

Abb. 5: Habitus (von links nach rechts) des Palpenkäfers Pselaphaulax dresdensis und der Zwergrüssler Nanophyes brevis und Microon sahlbergi (Fotos: L. Borowiec)

Die Zwergrüssler (Nanophyidae) leben überwiegend an Weiderichgewächsen (Lythraceae; Rheinheimer & Hass-LER 2010). Überraschend konnte 2019 neben den Schwesterarten Nanophyes marmoratus (Goeze, 1777) und N. circumscriptus (Aubé, 1864) mit N. brevis eine weitere, bislang aus dem Niederelbegebiet unbekannte Art gefunden werden (Abb. 5, Mitte). Mittlerweile liegen ebenfalls Meldungen aus dem Wendland vor (Gürlich & Tolasch 2022). An dem Fundort Holmer Teiche war auffällig, dass es sich bei den besiedelten Lythrum-Pflanzen auf den Teichböden durchweg um Kümmerformen handelte (Abb. 6).

Beim ebenfalls zu den Zwergrüsslern gehörenden Microon sahlbergi (Abb. 5, rechts) handelt es sich trotz seiner geringen Größe von nur circa 1,4 mm um eine wichtige Indikatorart: Der Käfer entwickelt sich an selten gewordenen Pflanzen auf wechselnassen naturnahen Flächen. Während Freude et al. (1983) den Sumpfquendel (Peplis portula) als Entwicklungspflanze angeben, meldet DAU-PHIN (1992) die Art vom Sechsmännigen Tännel (Elatine hexandra). Sowohl Peplis als auch Elatine (E. triandra und E. hydropiper, beide Rote Liste Niedersachsen 2 (Garve 2004)) sind von den Holmer Teichen bekannt (Müller 1997, Kaiser et al. 2010). Der Käfer trat von 2019 bis 2021 durchgehend in Anzahl in Lichtfallen auf. Es handelt sich offenbar um

Abb. 6: Kümmerform des Blutweiderichs (Lythrum salicaria) auf dem Boden eines Winterteiches, auf denen der Zwergrüssler Nanophyes brevis erstmals für das Niederelbegebiet auftrat (Foto: W. Schacht)

eine stabile, individuenreiche Population. Aufgrund der großen Seltenheit der Art kommt dem Vorkommen landes- und bundesweite Bedeutung zu.

Die Uferrüssler der Gattung Bagous leben zumeist mono- oder oligophag an Wasser- oder Uferpflanzen (Rheinheimer & Hassler 2010). Die 14 aus dem Niederelbegebiet gemeldeten Arten wer-

Abb. 7: Habitus der Rüsselkäfer Bagous glabrirostris (links)und Bagous tubulus (Fotos: L. Borowiec)

den durchweg "selten", meist "sehr selten" gefunden. Überwiegend handelt es sich um in ihrer Existenz bedrohte Käfer, da durch Störung von Uferzonen oder Eutrophierung die natürliche Vegetation verdrängt und damit den daran gebundenen Käfern die Lebensgrundlage entzogen wird. Vorkommen der Käfer eignen sich daher besonders zur Qualitätsbeurteilung aquatischer Lebensräume (Sprick 2001).

Bis zum Jahr 2018 war von den Holmer Teichen lediglich ein Fund von Bagous alsimatis (MARSHAM, 1802) aus dem Jahr 1987 bekannt. Im Rahmen der Untersuchungen in den Jahren 2018 bis 2021 kamen B. glabrirostris (Abb. 7, links) und B. subcarinatus (beide an Hornblatt (Ceratophyllaceae) lebend) und B. puncticollis von Froschbiss (Hydrocharis morsus-ranae) hinzu. Der Nachweis einer weiteren Art gelang 2021 mit B. tubulus (Abb. 7, rechts). Die aktuellen, individu-

enreichen Vorkommen von bislang vier Bagous-Arten auf dem Gebiet der Holmer Teiche unterstreicht die sehr hohe Bedeutung des Areals für die Fortexistenz anspruchsvoller gefährdeter Arten. Die Rüsselkäfer Acalyptus carpini (FA-BRICIUS, 1792) und A. sericeus (Abb. 8) entwickeln sich in Weidenkätzchen. Während A. carpini weit verbreitet und auch im NSG in geeigneten Habitaten nicht selten ist, handelt es sich bei A. sericeus, der sich insbesondere durch dichtere Behaarung auszeichnet, um eine ausgesprochen selten gefundene Art. Aus Schleswig-Holstein ist sie unbekannt, aus Niedersachsen liegen nur wenige Funde vor. Im Frühjahr 2021 trat der Käfer auf dem gesamten Gelände der Holmer Teiche in größerer Anzahl auf. Es handelt sich damit um ein besonders wichtiges Vorkommen von überregionaler Bedeutung.

Abb. 8: Habitus der Rüsselkäfer Acalyptus carpini (links) und A. sericeus (Fotos: L. Borowiec)

3.2 Euryöke Käfer

Tab. 2 zeigt eine Übersicht über alle als "sehr selten" oder "extrem selten" eingestuften euryöken Käfer der Holmer Teiche. Bedingt durch die nicht ausgeprägte Bindung an bestimmte Lebensräume erfüllen nur wenige Vertreter dieser Kategorie das Seltenheitskriterium (4 von insgesamt 121, s. Abb. 3). Die Ursachen für die Seltenheit von Arten, die vordergründig keine hohen Anforderungen an den Lebensraum stellen, können vielfäl-

tig sein: Es kann sich beispielsweise um hohen Druck durch Prädatoren auf Präimaginalstadien oder Imagines handeln, um Reduktion durch Endo- oder Ektoparasitoide oder bislang nicht erkannte spezifische Anforderungen. Im Folgenden werden besonders bemerkenswerte Arten vorgestellt, die im gesamten Niederelbegebiet nur wenige weitere bekannte Vorkommen besitzen oder hier ausschließlich von den Holmer Teichen bekannt sind.

Tab. 2: Als "sehr selten" oder "extrem selten" eingestufte euryöke Käfer der Holmer Teiche (fett: im Text individuell vorgestellt; *: bereits in Schacht 2020 aufgeführt)

Familie	Art
Laufkäfer (Carabidae)	Polistichus connexus (GEOFFR., 1785)*
Halmplattkäfer (Silvanidae)	Silvanus recticollis Rtt., 1876
Blattkäfer (Chrysomeldiae)	Lema cyanella (L., 1758)*
Blattkäfer (Chrysomeldiae)	Cryptocephalus coryli (L., 1758)

Abb. 9: Habitus (von links nach rechts) des Laufkäfers Polistichus connexus und der Blattkäfer Lema cyanella und Cryptocephalus coryli (Fotos: L. Borowiec)

Von dem in ganz Deutschland sehr seltenen Laufkäfer *Polistichus connexus* (Abb. 9, links) sind bislang aus Niedersachsen lediglich zwei Tiere bekannt (Schacht 2019b, Theunert 2020), eines davon von den Holmer Teichen. Nach dem Fund im Jahr 2019 gelang bis zum Frühjahr 2022 kein weiterer Nachweis. Ob eine Population der Art auf dem Gebiet der Holmer Teiche besteht, kann somit noch nicht sicher entschieden werden. Grundsätzlich erscheint das Areal für die offenbar in Ausbreitung befindliche Art geeignet zu sein.

Für das "Distel-Hähnchen" Lema cyanella (Abb. 9, Mitte) finden sich in der Literatur unterschiedliche Angaben zum Habitat. Während Koch (1992) die Art als hygrophil führt, gibt es bei RheinHEIMER & HASSLER (2018) keine derartigen Hinweise. Der Käfer lebt nahezu monophag an der vielfach bekämpften Ackerkratzdistel (*Cirsium arvense*). Trotz der Häufigkeit der Pflanze in unterschiedlichen Biotopen ist der Käfer auch bei gezielter Suche in Niedersachsen nur sehr selten zu finden. Zahlreiche Funde in Schleswig-Holstein liegen schon über 30 Jahre zurück. Das nach eigenen Untersuchungen stabile Vorkommen bei den Holmer Teichen ist derzeit das einzige bekannte im gesamten Niederelbegebiet. Lediglich aus dem Wendland liegen zwei Einzelfunde vor.

Der Blattkäfer *Cryptocephalus coryli* (Abb. 9, rechts) zählt zu der artenreichen Gattung der "Fallkäfer". Der Name resultiert aus der bei diesen Käfern ausge-

prägten Neigung, sich schon bei geringer Störung fallenzulassen. Aus dem NSG sind 15 Vertreter bekannt, von den Holmer Teichen bislang sieben. Der für die Gattung mit 6 mm auffallend große C. coryli lebt bevorzugt an Birke (Betula) und Hasel (Corylus). So gelang auch der Fund bei den Holmer Teichen an Birke. Der Käfer ist in ganz Deutschland selten, in einigen Regionen ist er bereits verschollen. Obwohl auch Nachweise einzelner Tiere innerhalb des NSG bei Schneverdingen und Handeloh gelangen, muss das Vorkommen bei den Holmer Teichen als besonders wichtig angesehen werden, da aus Niedersachsen außerhalb des NSG kaum aktuelle Funde vorliegen.

3.3 Xylobionte Käfer

Wie eingangs ausgeführt umfasst das Gelände der Holmer Teiche unterschiedlichste, für holzbewohnende Käferarten geeignete Strukturen. Besonders hervorzuheben sind die einzeln oder in Gruppen stehenden Alteichen mit Totholz im Kronenbereich und am Boden liegend sowie die umfangreichen Weidengebüsche, ebenfalls mit reichlichem Anteil abgestorbener Äste. Für eine Teichanlage ist damit ein ungewöhnlich umfassendes Angebot für xylobionte Käfer gegeben. Dies spiegelt sich entsprechend in der unerwartet reichhaltigen Käferfauna. Tab. 3 zeigt eine Übersicht über alle "sehr selten" oder "extrem selten" eingestuften xylobionten Käfer der Holmer Teiche.

Beim Baumschwammkäfer Mycetophagus decempunctatus (Abb. 10, links) handelt es sich um eine "Urwald-Reliktart" (Müller et al. 2005), die nur in historisch alten Wäldern oder Baumbeständen vorkommt. Es ist eine der wenigen zugehörigen Arten, die im NSG an den

Tab. 3: Als "sehr selten" oder "extrem selten" eingestufte xylobionte Käfer der Holmer Teiche (fett: im Text individuell vorgestellt; *: bereits in Schacht 2020 aufgeführt)

Familie	Art
Baumschwammkäfer (Mycetophagidae)	Mycetophagus decempunctatus F., 1801*
Bohrkäfer (Bostrychidae)	Lyctus brunneus (Sтерн., 1830)*
Bohrkäfer (Bostrychidae)	Lyctus cavicollis Lec., 1866*
Pochkäfer (Ptinidae, Anobiinae)	Cacotemnus rufipes (F., 1792)*
Bockkäfer (Cerambycidae)	Pedostrangalia revestita (L., 1767)
Bockkäfer (Cerambycidae)	Obrium cantharinum (L., 1767)*
Bockkäfer (Cerambycidae)	Plagionotus detritus (L., 1758)*

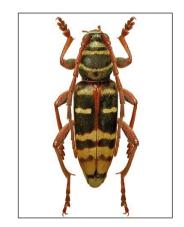


Abb. 10: Habitus (von links nach rechts) des Baumschwammkäfers Mycetophagus decempunctatus und der Bockkäfer Pedostrangalia revestita und Plagionotus detritus (Fotos: L. Borowiec)

durchgehend vorhandenen Hofeichen, in Hutewäldern oder "königlichen Holzungen" überdauern konnten. Der Käfer hat sich mittlerweile allerdings als im NSG weit verbreitet erwiesen. Dennoch zeigt der Fund an den Holmer Teichen, dass die hier gebotenen Habitate auch derartig anspruchsvollen xylobionten Käfern geeignete Überlebensräume bieten.

Der Bockkäfer Pedostrangalia revestita (Abb. 10, Mitte) ist in Deutschland zwar weit verbreitet, wird aber nur sehr selten und in einzelnen Tieren gefunden. Der Käfer entwickelt sich in verschiedenen abgestorbenen Laubhölzern wie Pappel (Populus), Eiche (Quercus) oder Ahorn (Acer). Aus dem Niederelbegebiet sind nach dem Jahr 1990 nur wenige Exemplare bekannt. 2021 gelang der Nachweis

von zwei Tieren bei den Holmer Teichen. Besonders hervorzuheben ist, dass dieser Käfer für das gesamte NSG und dessen weiterer Umgebung bislang nur von den Holmer Teichen bekannt ist.

Da der "Hornissenbock" *Plagionotus detritus* (Abb. 10, rechts) zur Entwicklung insbesondere berindetes stärkeres Eichenholz benötigt, wird der Käfer meist nur in naturnahen oder geschützten Gebieten ohne wirtschaftliche Verwertung von Eichenholz angetroffen, in denen stärkeres Totholz dem ungestörten Zerfall unterliegt. Erfreulicherweise scheint der attraktive Käfer im NSG verbreitet zu sein. Für die Holmer Teiche beweist das Vorkommen die Existenz von für viele Insekten wichtigen hochwertigen Totholzanteilen.

3.4 Aquatische Käfer

Neben den hygrophilen kommt naturgemäß den wasserbewohnenden Käfern bei der ökologischen Bewertung der Holmer Teiche besonderes Interesse zu. Tab. 4 gibt die Übersicht über alle als "sehr selten" oder "extrem selten" eingestuften zugehörigen Arten. Die mit zehn gegenüber den 28 seltenen hygrophilen Arten deutlich geringere Zahl ist in dem generell deutlich kleineren Pool an aquatischen Arten gegenüber den hygrophilen begründet (50 vs. 202 in Abb. 3). Der "Nördliche Zwerg-Tauchkäfer" Hydroglyphus hamulatus (Abb. 11, links) ist nur aus der Nordhälfte Deutschlands bekannt und auch hier meist sehr selten. Aus Niedersachsen liegen nur vereinzelte Nachweise vor. In den Jahren 2019 bis

2021 trat er regelmäßig in Lichtfallen an den Holmer Teichen auf. Es handelt sich offenbar um eine stabile Population. Das Vorkommen ist damit mindestens von landesweiter Bedeutung.

Der Schwimmkäfer Hygrotus nigrolineatus (Abb. 11, Mitte) ist deutschlandweit sehr selten. Aus Niedersachsen liegen nur wenige aktuelle Meldungen vor. 2021 gelang der Nachweis je eines Exemplars bei den Holmer Teichen und beim nahegelegenen Inzmühlen innerhalb des NSG in Lichtfallen. Spitzenberg (2021) gibt als bevorzugten Lebensraum "sandig bis lehmig-tonige Abgrabungsgewässer" an, was in Übereinstimmung mit den Sandböden der Holmer Teiche steht. Ob es sich um eine etablierte Population handelt, müssen weitere Untersuchungen erweisen.

Tab. 4: Als "sehr selten" oder "extrem selten" eingestufte aquatische Käfer der Holmer Teiche (fett: im Text individuell vorgestellt; *: bereits in Schacht 2020 aufgeführt)

Familie	Art
Schwimmkäfer (Dytiscidae)	Hydroglyphus hamulatus (GYLL., 1813)*
Schwimmkäfer (Dytiscidae)	Hygrotus nigrolineatus (STEVEN, 1808)
Schwimmkäfer (Dytiscidae)	Hydroporus rufifrons (O. Müller, 1776)*
Schwimmkäfer (Dytiscidae)	Laccophilus poecilus KLUG, 1834*
Schwimmkäfer (Dytiscidae)	Ilybius montanus (Steph., 1828)*
Schwimmkäfer (Dytiscidae)	Rhantus bistriatus (Bergstr., 1777)
Taumelkäfer (Gyrinidae)	Gyrinus paykulli G. Ochs, 1927*
Wasserfreunde (Hydrophilidae)	Hydrobius rottenbergii Gerh., 1872*
Wasserfreunde (Hydrophilidae)	Hydrophilus piceus (L., 1758)*
Wasserfreunde (Hydrophilidae)	Berosus frontifoveatus Kuwert, 1888*

Abb. 11: Habitus (von links nach rechts) der Schwimmkäfer Hydroglyphus hamulatus, Hygrotus nigrolineatus und Laccophilus poecilus (Fotos: L. Borowiec)

Der Schwimmkäfer Laccophilus poecilus (Abb. 11, rechts) ist in den meisten Bundesländern sehr selten (Bleich et al. 2022). Aus Niedersachsen liegen nur wenige Funde vor, aus dem Niederelbegebiet war er bis 2019 unbekannt. Der Käfer bevorzugt dystrophe Stillgewässer, ist aber nicht an Moore gebunden. Im Rahmen der Untersuchung der Holmer Teiche trat er 2019 und 2020 mehrfach in Lichtfallen auf. Es ist damit von einer hier vorhandenen, offenbar weiträumig isolierten Population auszugehen.

Der gegenüber seinen Verwandten recht langgestreckte Taumelkäfer *Gyrinus paykulli* (Abb. 12, links) ist in Schleswig-Holstein zwar selten, aber weit verbreitet. Aus Nordniedersachsen dagegen waren nur wenige Tiere aus dem äußersten Osten bekannt. Der Käfer wurde

beim Abfischen eines Teiches im November 2019 entdeckt.

Der Große Kolbenwasserkäfer (Hydrophilus piceus) ist mit bis zu 5 cm Körperlänge der größte europäische Wasserkäfer (Abb. 12, Mitte). Im Niederelbegebiet war er nur in wenigen Exemplaren aus dem Wendland bekannt. Das letzte bekannte Exemplar aus der Nordheide datierte aus dem Jahr 1936 von Bötersheim an der Este (Меувонм et al. 2011). Im Rahmen der Aufnahme des Käferinventars des NSG traten vereinzelt Tiere in Lichtfallen auf. Lediglich in den Holmer Teichen konnten beim jährlichen Abfischen (Abb. 13) regelmäßig mehrere Exemplare beobachtet werden. Es ist hier von einer individuenreichen und stabilen Population auszugehen, die von weiträumiger Bedeutung ist.

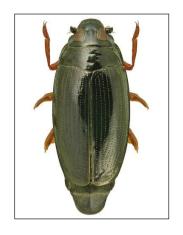


Abb. 12: Habitus (von links nach rechts) des Taumelkäfers Gyrinus paykulli und der Wasserfreunde Hydrophilus piceus und Berosus frontifoveatus (Fotos: L. Borowiec)

Mit dem Fang eines Exemplars des Wasserkäfers Berosus frontifoveatus (Abb. 12, rechts) an den Holmer Teichen gelang 2019 der erste Nachweis der deutschlandweit sehr seltenen Art in Niedersachsen (Schacht 2022). Dass es sich grundsätzlich nicht um ein verirrtes Einzeltier handelt, zeigte ein weiterer Nachweis 2021 im NSG am Benninghöfener Moor. Inwieweit die Art sich in den Holmer Teichen etabliert hat, müssen weitere Untersuchungen erbringen.

4 Arten der Roten Listen

Von zentraler Bedeutung für die Beurteilung des ökologischen Wertes der Holmer Teiche ist – neben der regionalen, landes- oder bundesweiten Seltenheit – der Anteil an Arten, der auf Roten Listen geführt wird. In die dortigen Einstufungen in Gefährdungsklassen gehen zusätzlich sich abzeichnende Trends (negative oder positive Bestandsentwicklungen) ein sowie Gefährdungen zugehöriger Biotope. Alle im Vorangegangenen individuell vorgestellten Arten (Ausnahme Nanophyes brevis) werden in Roten Listen für Deutschland (RLD) oder Niedersachsen (RLN) geführt, ebenso der überwiegende Teil der in den Tabellen 1 bis 4 aufgelisteten Arten. Ausnahmen bestehen bei Polistichus connexus, Hydroglyphus hamulatus und Berosus frontifoveatus, da diese zum Zeitpunkt der Erstellung der RLN aus diesem Bundesland noch nicht bekannt waren. Im Rahmen einer Überarbeitung müssten sie Aufnahme finden. Zusätzlich finden sich zahlreiche weitere Arten in den Roten Listen. Relevant für das

Abb. 13: Beim Abfischen trockenfallender Teich mit Funden des Großen Kolbenwasser-käfers (Foto W. Schacht)

vorliegende Untersuchungsgebiet sind folgende Arbeiten:

- Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands (BFN 2016)
- Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands (BFN 2021)
- Rote Liste der in Niedersachsen und Bremen gefährdeten Sandlaufkäfer und Laufkäfer (Assmann et al. 2003)
- Rote Liste der in Niedersachsen und Bremen gefährdeten Wasserkäfer (HAASE 1996)

Für Niedersachsen liegen demnach lediglich Listen für Lauf- und Wasserkäfer vor. Entsprechend niedrig ist hier die Zahl der insgesamt eingestuften Arten. Im Anhang sind allen Arten die jeweiligen Gefährdungskategorien zugeordnet. Abb. 14 gibt eine Übersicht über die in Roten Listen geführten Käfer der Holmer Teiche mit aktuellen Nachweisen (ab dem Jahr 2000). Die Bedeutung des Areals für den Erhalt seltener und bedrohter Arten wird hier besonders deutlich: Sechs Arten sind in Niedersachsen

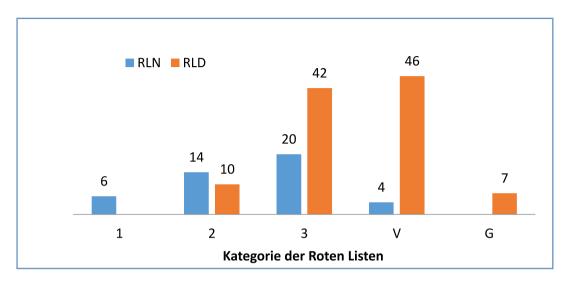


Abb. 14: In Roten Listen geführte Käferarten der Holmer Teiche (RLN = Rote Listen für Niedersachsen, RLD = Rote Listen für Deutschland; 1 "vom Aussterben bedroht", 2 "stark gefährdet", 3 "gefährdet", V "Vorwarnliste", G "Gefährdung unbekannten Ausmaßes")

konkret vom Aussterben bedroht, weitere 14 stark gefährdet. Zehn der an den Holmer Teichen vorkommenden Arten sind sogar bundesweit stark gefährdet. Etliche werden auf beiden Listen geführt; in Summe, einschließlich der Vorwarnliste und Arten mit Gefährdung unbekannten Ausmaßes, kommt 126 Arten ein Gefährdungsstatus zu, 19 % aller dort vorkommender Käferarten. 28 Arten werden in zumindest einer Liste in den Kategorien 1 oder 2 geführt.

Die Hauptursache für die breite Existenzgefährdung zahlreicher Insektenarten ist die Beeinträchtigung oder Zerstörung der von ihnen benötigten Biotope. Die sehr große Zahl der auf dem Gebiet der Holmer Teiche vorkommenden gefährdeten Käferarten belegt den enormen Wert der hier noch gebotenen intakten Lebensräume.

4.1 Arten der Roten Listen Niedersachsens

Obwohl, wie oben ausgeführt, für Niedersachsen nur Einstufungen für Laufund Wasserkäfer vorliegen, werden 40 Arten in den Kategorien 1 bis 3 geführt. Deren Verteilung auf die ökologischen Gruppen zeigt Abb. 15.

Dabei stellen Laufkäfer lediglich Vertreter feuchter und trockensandiger Biotope. Es dominieren bei den zusammen 25 Laufkäferarten die hygrophilen. 13 kom-

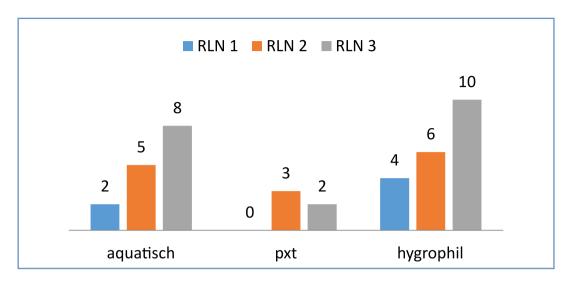


Abb. 15: In den Roten Listen der in Niedersachsen bedrohten Tierarten (Assmann et al. 2003, Haase 1996) geführte Käfer der Holmer Teiche nach Kategorie und Biotopcluster gegliedert

men die höchsten Gefährdungskategorien 1 und 2 zu (Tab. 5). Bei den fünf xerothermophilen Arten in Abb. 15 handelt es sich allerdings um im NSG verbreitet vorkommende.

Von den 15 Wasserkäfern in den Kategorien 1 bis 3 (Abb. 15) kommen sieben den beiden höchsten Gefährdungsstufen zu (Tab. 6).

4.2 Arten der Roten Listen Deutschlands

Die Verteilung der in den Roten Listen für Deutschland in den Kategorien 1 bis 3 geführten Arten auf die zugeordneten Biotopcluster zeigt Abb. 16. Die Analyse hinsichtlich der Bindung an spezifische Lebensräume zeigt, dass die Gruppe der hygrophilen Käfer, wie schon bei der Gesamtartenzahl, mit 31 RLD-Arten deutlich dominiert. Drei Wasserkäfer werden auf der RLD geführt: Hydroporus rufifrons in der Kategorie 2, Hygrotus nigrolineatus und Rhantus bistriatus in der Kategorie 3. Durchaus bemerkenswert sind die 11 xylobionten Arten. Tab. 7 gibt eine Übersicht über alle Arten der Kategorie 2.

Tab. 5: Laufkäfer der Holmer Teiche, die in der Roten Liste für Niedersachsen (Assmann et al. 2003) in den Kategorien 1 oder 2 geführt werden (fett: im Text individuell vorgestellt; *: bereits in Schacht 2020 aufgeführt)

Laufkäferart	RLN	Cluster
Bembidion tenellum Er., 1837	1	hygrophil
Agonum lugens (Duft., 1812)*	1	hygrophil
Limodromus longiventris Mannerh., 1825*	1	hygrophil
Chlaenius tristis (Schaller, 1783)	1	hygrophil
Harpalus calceatus (Duft., 1812)*	2	xerotherm
Harpalus froelichii Sturm, 1818*	2	xerotherm
Stenolophus skrimshiranus Steph., 1828*	2	hygrophil
Acupalpus brunnipes (Sturm, 1825)*	2	xerotherm
Pterostichus gracilis gracilis (Dejean, 1828)*	2	hygrophil
Agonum versutum Sturm, 1824*	2	hygrophil
Platynus livens (Gyll., 1810)*	2	hygrophil
Badister unipustulatus Bonelli, 1813*	2	hygrophil
Paradromius longiceps (Dejean, 1826)	2	hygrophil

Tab. 6: Wasserkäfer der Holmer Teiche, die in der Roten Liste für Niedersachsen (HAASE 1996) in den Kategorien 1 oder 2 geführt werden (fett: im Text individuell vorgestellt; *: bereits in Schacht 2020 aufgeführt)

Wasserkäferart	RLN
Laccophilus poecilus Klug, 1834*	1
Cybister lateralimarginalis (DeGeer, 1774)*	1
Hydroporus rufifrons (O. Müller, 1776)*	2
Hygrotus nigrolineatus (STEVEN, 1808)	2
Ilybius montanus (Steph., 1828)*	2
Gyrinus paykulli G. Ochs, 1927*	2
Hydrophilus piceus (L., 1758)*	2

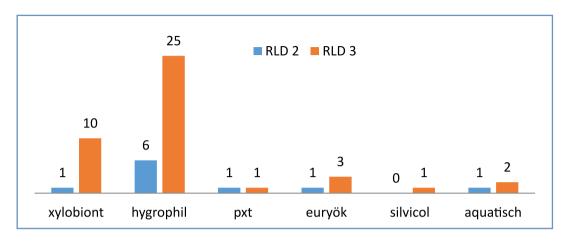


Abb. 16: In den Roten Listen Deutschlands (BFN 2016, 2021) geführte Käfer pro Biotopcluster

Tab. 7: Käfer der Holmer Teiche, die in den Roten Listen für Deutschland (BFN 2016, 2021) in der Kategorie 2 (stark gefährdet) geführt werden (fett: im Text individuell vorgestellt; *: bereits in Schacht 2020 aufgeführt)

Art	Cluster
Hydroporus rufifrons (O. Müller, 1776)*	aquatisch
Polistichus connexus (GEOFFR., 1785)*	euryök
Limodromus longiventris Mannerh., 1825*	hygrophil
Dibolia occultans (Kocн, 1803)*	hygrophil
Nanomimus circumscriptus (Aubé, 1864)*	hygrophil
Microon sahlbergi (C. Sahlb., 1835)*	hygrophil
Bagous puncticollis Boh., 1845*	hygrophil
Pelenomus olssoni (Israelson, 1972)*	hygrophil
Acupalpus brunnipes (Sturm, 1825)*	xerotherm
Mycetophagus decempunctatus F., 1801*	xylobiont

Danksagungen

Dirk Mertens (VNP) gilt besonderer Dank für die kontinuierliche Unterstützung, Überlassung von Beifängen im Rahmen des Schmetterling-Monitorings und gemeinsame Exkursionen, Steffen Fass für die Unterstützung bei der Arbeit an den Holmer Teichen, insbesondere im Rahmen des jährlichen Abfischens.

Literatur

- Assmann, T., Dormann, W., Främbs, H., Gürlich, S., Handke, K., Huk, T., Sprick, P. & Terlutter, H. (2003): Rote Liste der in Niedersachsen und Bremen gefährdeten Sandlaufkäfer und Laufkäfer (Coleoptera: Cicindelidae et Carabidae) mit Gesamtartenverzeichnis. Informationsdienst Naturschutz Niedersachsen 23: 70–95.
- Bleich, O., Gürlich, S. & Köhler, F. (2022): Verzeichnis und Verbreitungsatlas der Käfer Deutschlands. World Wide Web electronic publication www.coleokat.de. Abfrage Dezember 2022.
- BFN (Bundesamt für Naturschutz, Hrsg.) (2016): Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 4: Wirbellose Tiere (Teil 2). Naturschutz und Biologische Vielfalt **70** (4). Bonn Bad Godesberg, 598 S.
- BFN (Bundesamt für Naturschutz, Hrsg.) (2021): Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 5: Wirbellose Tiere (Teil 3). Naturschutz und Biologische Vielfalt **70** (5). Bonn Bad Godesberg, 705 S.
- Dauphin, P. (1992): Les elatinacées, plantes-hôtes méconnues pour *Nanophyes sahl-bergi* (Sahl.) et *Pelenomus olssoni* (Isr.) (Col., Curculionidae). Bulletin de la Société entomologique de France **97** (1): 65–68.
- Freude, H., Harde, K. W. & Lohse, G.A. (1983): Die Käfer Mitteleuropas, Bd. 11. Krefeld, 342 S.
- Garve, E. (2004): Rote Liste und Florenliste der Farn- und Blütenpflanzen in Niedersachsen und Bremen. Niedersächsisches Landesamt für Ökologie. 76 S.
- GÜRLICH, S., MEYBOHM, H. & ZIEGLER, W. (2017): Katalog der Käfer Schleswig-Holsteins und des Niederelbegebietes. Verhandlungen des Vereins für Naturwissenschaftliche Heimatforschung zu Hamburg e. V. 44, 207 S.
- Gürlich, S. & Tolasch, T. (2022): Verbreitungskarten der Käfer Schleswig-Holsteins und des Niederelbegebietes. Homepage des Vereins für Naturwissenschaftliche Heimatforschung zu Hamburg e. V. http://www.entomologie.de/hamburg/karten. Abfrage Dezember 2022.

- Haase, P. (1996): Rote Liste der in Niedersachsen und Bremen gefährdeten Wasserkäfer mit Gesamtartenverzeichnis. Informationsdienst Naturschutz Niedersachsen 3: 82–100.
- Kaiser, T., Mertens, D., Schacherer, A. & Täuber, T. (2010): Kartiertreffen im Naturschutzgebiet "Lüneburger Heide" zum Tag der Artenvielfalt. Floristische Notizen aus der Lüneburger Heide 18: 2–14.
- Косн, К. (1992): Die Käfer Mitteleuropas, Ökologie Bd. 3. Krefeld, 389 S.
- Köhler, F. (2000): Totholzkäfer in Naturwaldzellen des nördlichen Rheinlands. Hrsg.: Landesanstalt für Ökologie, Bodenordnung und Forsten / Landesamt für Agrarordnung NRW. LÖBF-Schriftenreihe 18, 351 S.
- Köhler, F. (2010): Die klimabedingte Veränderung der Totholzkäferfauna (Coleoptera) des nördlichen Rheinlandes: Analysen zur Gesamtfauna und am Beispiel von Wiederholungsuntersuchungen in ausgewählten Naturwaldzellen. Landesbetrieb Wald und Holz NRW. 198 S.
- МЕУВОНМ, Н., ZIEGLER, W. & GÜRLICH, S. (2011): Nachträge zur Käferfauna von Schleswig-Holstein, Hamburg und Nord-Niedersachsen. Bericht der koleopterologischen Sektion mit zusammenfassendem Jahresrückblick 2010. Bombus Faunistische Mitteilungen aus Nordwestdeutschland 3: 369–380.
- Müller, J. (1997): Die Holmer Teiche. In: Cordes, H., Kaiser, T., v. d. Lancken, H., Lütkepohl, M. & Prüter, J. (Hrsg.): Naturschutzgebiet Lüneburger Heide. Geschichte Ökologie Naturschutz. Schriftenreihe des Vereins Naturschutzpark e. V. Hauschild, Bremen, 376 S.
- Müller, J., Bussler, H., Bense, U., Brustel, H., Flechtner, G., Fowles, A., Kahlen, M., Möller, G., Mühle, H., Schmidl, J. & Zabransky, P. (2005): Urwald relict species. Waldökologie online 2: 106–113.
- Rheinheimer, J & Hassler, M. (2010): Die Rüsselkäfer Baden-Württembergs. Heidelberg, 944 S.
- Rheinheimer, J. & Hassler, M. (2018): Die Blattkäfer Baden-Württembergs. Karlsruhe, 928 S.
- Schacht, W. (2019a): Zur Bedeutung von Kiesgruben für den Erhalt der Artenvielfalt Teil 2: Käferzönosen nordniedersächsischer Gruben im Vergleich (Coleoptera). Entomologische Zeitschrift 129 (2): 89–108.
- Schacht, W. (2019b): Erstnachweis von *Polistichus connexus* (Geoffroy in Fourcroy, 1785) für Niedersachsen (Coleoptera, Carabidae). Entomologische Nachrichten und Berichte **63** (1): 233–235.

- Schacht, W. (2020): Die Käfer des Naturschutzgebietes Lüneburger Heide. VNP-Schriften 12. Niederhaverbeck, 172 S.
- Schacht, W. (2022): Erste Nachweise von *Berosus frontifoveatus* Kuwert, 1888 aus Niedersachsen. Bombus Faunistische Mitteilungen aus Nordwestdeutschland 4 (5): 137–140.
- Spitzenberg, D. unter Mitarbeit von Schöne, A., Klausnitzer, B. & W. Malchau (2021): Die wasserbewohnenden Käfer Sachsen-Anhalts. Hrsg.: Landesamt für Umweltschutz Sachsen-Anhalt. Natur+Text, Rangsdorf, 772 S.
- Sprick, P. (2001): Suitability of an Insect group for the Habitats Directive of the EU: The Weevil Subfamily Bagoinae. Contributions to the Ecology of Phytophagous Beetles VII (Col.: Curculionidae: Bagoinae). In: Stüben, P. E. (Hrsg.) Snudebiller 2: 7–40.
- Theunert, R. (2020): *Polistichus connexus* (Geoffroy in Fourcroy, 1785) in Niedersachsen (Coleoptera, Carabidae). Entomologische Nachrichten und Berichte **64**: 69.
- Trautner, J. (Hrsg.) (2017): Die Laufkäfer Baden-Württembergs, Bd. 1–2. Stuttgart, 848 S.

Anschrift des Verfassers: Dr. Dr. Wolfgang Schacht Kiefernweg 31 21279 Appel dr.wolfgang.schacht@t-online.de

Anhang

Auf dem Gelände der Holmer Teiche in den Jahren 1987 bis 2022, schwerpunktmäßig 2018 bis 2021, gefundene, als "mäßig häufig" bis "extrem selten" (Gürlich et al. 2017) eingestufte Käferarten (123 als "häufig" oder "sehr häufig" eingestufte Arten sind nicht aufgeführt).

Legende:

RLN = Rote Listen Niedersachsen: Laufkäfer: Assmann et al. (2003); Wasserkäfer: Haase (1996).

RLD = Rote Listen Deutschland: BFN (2016, 2021).

1 = vom Aussterben bedroht; 2 = stark gefährdet; 3 = gefährdet; V = Vorwarnliste; P = potenziell gefährdet; R = sehr seltene Arten (beziehungsweise mit geografischer Restriktion); G = Gefährdung unbekannten Ausmaßes; D = Daten defizitär; / = nicht bewertet; * = ungefährdet; ** ungefährdet, nicht in RL aufgeführt; nb = nicht bewertet; " = Rote Liste für die Gruppe liegt nicht vor.

H = Häufigkeit im Niederelbegebiet (GÜRLICH et al. 2017): mh = "mäßig häufig"; s = "selten", ss = "sehr selten"; es = "extrem selten" ("sehr häufige" und "häufige" Arten sind nicht enthalten).

Cluster = Biotopcluster (Schacht 2020): xyl = xylobiont (Köhler 2000); sil = silvicol; hyg = hygrophil; aqu = aquatisch; pxt = psammo-, xero- und/oder thermophil; eur = euryök; syn = synanthrop.

1. Nw. = letzter Nachweis auf dem Gebiet der Holmer Teiche.

Art	RLN	RLD	Н	Cluster	1. Nw.
Carabidae (Laufkäfer)	1				
Cicindela hybrida hybrida L., 1758	*	*	mh	pxt	2018
Cicindela campestris campestris L., 1758	*	*	mh	pxt	2018
Carabus auronitens auronitens F., 1792	*	*	mh	sil	2020
Leistus rufomarginatus (Duft., 1812)	*	*	mh	sil	2021
Omophron limbatum (F., 1777)	*	V	mh	hyg	2021
Elaphrus cupreus Duft., 1812	3/4	*	mh	hyg	2018
Elaphrus riparius (L., 1758)	*	*	mh	hyg	2018
Dyschirius thoracicus (Rossi, 1790)	3/4	*	mh	hyg	2014
Dyschirius politus (Dejean, 1825)	3	*	mh	pxt	2021
Dyschirius aeneus (Dejean, 1825)	3/4	*	mh	hyg	2018
Dyschirius tristis Steph., 1827	3/4	*	mh	hyg	2019
Tachyura diabrachys (Kolen., 1845)	/	*	S	hyg	2020
Bembidion ruficolle (PANZER, 1796)	R	*	SS	hyg	2021
Bembidion obliquum Sturm, 1825	*	*	S	hyg	2019
Bembidion varium (OLIVIER, 1795)	*	*	mh	hyg	2021
Bembidion semipunctatum (Donovan, 1806)	V	*	S	hyg	2018
Bembidion bruxellense Wesm., 1835	3/4	*	S	hyg	2021
Bembidion fumigatum (Duft., 1812)	3	*	S	hyg	2021
Bembidion assimile Gyll., 1810	3/4	*	mh	hyg	2021
Bembidion tenellum Er., 1837	1	3	es	hyg	2021
Bembidion doris (PANZER, 1796)	V	V	mh	hyg	2021
Bembidion octomaculatum (Goeze, 1777)	3	3	mh	hyg	2020
Perigona nigriceps (Dejean, 1831)	3/4	*	S	eur	2020
Harpalus griseus (PANZER, 1796)	3	*	S	pxt	2019
Harpalus calceatus (Duft., 1812)	2	*	S	pxt	2021
Harpalus froelichii Sturm, 1818	2	*	S	pxt	2020
Ophonus rufibarbis (F., 1792)	3/4	*	mh	eur	2019
Ophonus puncticeps Steph., 1828	3/4	*	S	pxt	2019
Stenolophus teutonus (Schrank, 1781)	*	*	mh	hyg	2014
Stenolophus skrimshiranus Steph., 1828	2	3	s	hyg	2021
Stenolophus mixtus (Herbst, 1784)	*	*	mh	hyg	2021

Art	RLN	RLD	Н	Cluster	1. Nw.
Dicheirotrichus placidus (Gyll., 1827)	*	*	mh	hyg	2022
Acupalpus flavicollis (Sturm, 1825)	*	*	mh	hyg	2022
Acupalpus brunnipes (STURM, 1825)	2	2	s	pxt	2019
Acupalpus dubius Schilsky, 1888	3	V	s	hyg	2019
Acupalpus luteatus (Duft., 1812)	/	R	S	pxt	2019
Acupalpus exiguus Dejean, 1829	V	*	mh	hyg	2020
Anthracus consputus (Duft., 1812)	3	V	mh	hyg	2021
Pterostichus rhaeticus Heer, 1837	*	*	mh	hyg	1987
Pterostichus gracilis gracilis (Dejean, 1828)	2	V	S	hyg	2019
Pterostichus minor (Gyll., 1827)	*	*	mh	hyg	2019
Agonum sexpunctatum (L., 1758)	*	*	mh	eur	2018
Agonum marginatum (L., 1758)	*	*	mh	hyg	2019
Agonum versutum Sturm, 1824	2	3	s	hyg	2019
Agonum viduum (PANZER, 1796)	*	*	mh	hyg	2014
Agonum lugens (Duft., 1812)	1	3	SS	hyg	2020
Agonum piceum (L., 1758)	3	3	s	hyg	2018
Agonum gracile Sturm, 1824	3	V	s	hyg	2018
Agonum thoreyi Dejean, 1828	*	*	mh	hyg	2022
Platynus livens (Gyll., 1810)	2	3	s	hyg	2018
Limodromus longiventris Mannerh., 1825	1	2	s	hyg	2018
Oxypselaphus obscurus (Herbst, 1784)	*	*	mh	hyg	2022
Amara bifrons (GYLL., 1810)	*	*	mh	pxt	2019
Amara consularis (Duft., 1812)	*	*	mh	pxt	2019
Amara apricaria (PAYK., 1790)	*	*	mh	pxt	2019
Amara aulica (PANZER, 1796)	*	*	mh	eur	2021
Chlaenius tristis (Schaller, 1783)	1	3	es	hyg	2021
Badister unipustulatus Bonelli, 1813	2	3	S	hyg	2021
Badister bullatus (Schrank, 1798)	*	*	mh	eur	2019
Badister lacertosus Sturm, 1815	*	*	mh	hyg	2019
Badister dilatatus Chaud., 1837	V	*	mh	hyg	2021
Badister peltatus (PANZER, 1796)	3	3	SS	hyg	2019
Badister collaris Motsch., 1844	3	*	s	hyg	2019

Art	RLN	RLD	Н	Cluster	1. Nw.
Demetrias monostigma SAM., 1819	3	*	mh	hyg	2022
Demetrias imperialis (GERMAR, 1823)	"	*	s	hyg	2022
Dromius agilis (F., 1787)	*	*	mh	sil	2018
Dromius angustus Brullé, 1834	*	*	s	sil	2020
Philorhizus sigma (Rossi, 1790)	*	*	mh	hyg	1987
Philorhizus melanocephalus (Dejean, 1825)	*	*	mh	eur	1987
Paradromius longiceps (Dejean, 1826)	2	3	s	hyg	2020
Polistichus connexus (Geoffr., 1785)	/	2	es	eur	2019
Haliplidae (Wassertreter)					
Haliplus lineatocollis (Marsh., 1802)	*	*	mh	aqu	2019
Haliplus immaculatus Gerh., 1877	*	*	mh	aqu	2021
Haliplus flavicollis Sturm, 1834	*	*	mh	aqu	2014
Haliplus fulvus (F., 1801)	3	V	s	aqu	2021
Dytiscidae (Schwimmkäfer)					
Hyphydrus ovatus (L., 1760)	*	*	mh	aqu	2019
Hydroglyphus geminus (F., 1792)	*	*	mh	aqu	2021
Hydroglyphus hamulatus (GYLL., 1813)	/	*	es	aqu	2021
Hygrotus versicolor (Schaller, 1783)	*	*	mh	aqu	2014
Hygrotus decoratus (Gyll., 1810)	*	*	mh	aqu	2021
Hygrotus nigrolineatus (Steven, 1808)	2	3	es	aqu	2021
Hydroporus angustatus Sturm, 1835	*	*	mh	aqu	2019
Hydroporus rufifrons (O. Müller, 1776)	2	2	ss	aqu	2014
Laccophilus poecilus Klug, 1834	1	*	es	aqu	2020
Ilybius fenestratus (F., 1781)	*	*	mh	aqu	2020
Ilybius ater (DeGeer, 1774)	*	*	mh	aqu	2020
Ilybius fuliginosus (F., 1792)	*	*	mh	aqu	2018
Ilybius subaeneus Er., 1837	3	*	s	aqu	2020
Ilybius quadriguttatus (LACORD., 1835)	*	*	s	aqu	2021
Ilybius guttiger (Gyll., 1808)	*	V	s	aqu	2019
Ilybius chalconatus (PANZER, 1796)	*	*	mh	aqu	2018
Ilybius montanus (Steph., 1828)	2	*	es	aqu	2020
Rhantus frontalis (MARSH., 1802)	*	*	mh	aqu	2021

Art	RLN	RLD	Н	Cluster	1. Nw.
Rhantus bistriatus (Bergstr., 1777)	3	3	SS	aqu	2021
Rhantus exsoletus (Forster, 1771)	*	*	mh	aqu	2021
Hydaticus seminiger (DeGeer, 1774)	*	*	mh	aqu	2013
Acilius sulcatus (L., 1758)	*	*	mh	aqu	2019
Acilius canaliculatus (Nicolai, 1822)	*	*	mh	aqu	2019
Dytiscus marginalis L., 1758	*	*	mh	aqu	2020
Cybister lateralimarginalis (DeGeer, 1774)	1	*	s	aqu	2020
Gyrinidae (Taumelkäfer)					
Gyrinus marinus Gyll., 1808	*	V	mh	aqu	2020
Gyrinus paykulli G. Оснs, 1927	2	V	es	aqu	2019
Hydrochidae (Rippen-Wasserkäfer)					
Hydrochus crenatus (F., 1792)	*	*	mh	aqu	2021
Georissidae (Uferschlammkäfer)					
Georissus crenulatus (Rossi, 1794)	3	G	s	hyg	2001
Hydrophilidae (Wasserfreunde)					
Cercyon ustulatus (Preys., 1790)	*	*	mh	hyg	2022
Cercyon haemorrhoidalis (F., 1775)	*	*	s	eur	2016
Cercyon laminatus Sharp, 1873	*	nb	mh	hyg	2019
Cercyon unipunctatus (L., 1758)	*	*	mh	eur	2019
Cercyon quisquilius (L., 1760)	*	*	mh	eur	2019
Cercyon nigriceps (Marsh., 1802)	P	*	s	eur	2021
Hydrobius rottenbergii Gerh., 1872	/	/	SS	aqu	2019
Laccobius striatulus (F., 1801)	3	*	s	aqu	2019
Helochares obscurus (O. Müller, 1776)	*	*	mh	aqu	2021
Helochares punctatus Sharp, 1869	3	D	s	aqu	2014
Enochrus melanocephalus (Olivier, 1793)	3	*	s	aqu	2020
Enochrus ochropterus (Marsh., 1802)	3	*	s	aqu	2022
Enochrus quadripunctatus (Herbst, 1797)	*	*	mh	aqu	2018
Enochrus testaceus (F., 1801)	*	*	mh	aqu	2018
Enochrus affinis (Thunb., 1794)	*	*	mh	aqu	2018
Enochrus coarctatus (Gredler, 1863)	*	*	S	aqu	2022
Cymbiodyta marginella (F., 1792)	*	*	mh	aqu	2019

Art	RLN	RLD	Н	Cluster	1. Nw.
Chaetarthria seminulum (Herbst, 1797)	*	*	mh	aqu	2022
Hydrochara caraboides (L., 1758)	3	*	s	aqu	2020
Hydrophilus piceus (L., 1758)	2	V	es	aqu	2021
Berosus signaticollis (CHARP., 1825)	*	*	s	aqu	2021
Berosus frontifoveatus Kuwert, 1888	/	V	es	aqu	2019
Histeridae (Stutzkäfer)					
Plegaderus saucius Er., 1834	"	*	s	xyl	2006
Gnathoncus buyssoni Auzat, 1917	"	*	mh	eur	2018
Carcinops pumilio (Er., 1834)	"	*	mh	eur	2019
Paromalus parallelepipedus (Herbst, 1791)	"	*	mh	xyl	2018
Hister helluo Truqui, 1852	"	*	ss	hyg	2014
Silphidae (Aaskäfer)					
Nicrophorus humator (GLED., 1767)	"	*	mh	eur	2021
Nicrophorus investigator Zett., 1824	"	*	s	eur	2019
Necrodes littoralis (L., 1758)	"	*	mh	eur	2021
Colonidae (Kolonistenkäfer, Leiodidae part.)					
Colon serripes (C. Sahlb., 1822)	"	*	mh	eur	2020
Leiodidae (Trüffelkäfer, Schwammkugelkäfer)					
Leiodes ferruginea (F., 1787)	"	*	s	eur	2020
Liocyrtusa vittata (Curtis, 1840)	"	*	mh	eur	2021
Scydmaenidae (Ameisenkäfer, Staphylinidae part.)					
Stenichnus subseriatus Franz, 1960	/	*	mh	eur	1987
Euconnus rutilipennis (Müll.Kunz, 1822)	"	G	ss	hyg	2019
Staphylinidae (Kurzflügler)					
Phloeostiba plana (Payk., 1792)	"	*	mh	xyl	2018
Olophrum piceum (Gyll., 1810)	"	*	mh	hyg	2022
Arpedium quadrum (Grav., 1806)	"	*	s	hyg	2022
Lesteva sicula heeri Fauvel, 1871	"	*	mh	hyg	2022
Deleaster dichrous (Grav., 1802)	"	V	s	hyg	2021
Manda mandibularis (Gyll., 1827)	"	V	s	hyg	2021
Carpelimus rivularis (Мотsсн., 1860)	u	*	mh	hyg	2018
Oxytelus migrator Fauvel, 1904	ű	nb	mh	eur	2019

Art	RLN	RLD	Н	Cluster	1. Nw.
Bledius pallipes (Grav., 1806)	"	*	s	hyg	2001
Bledius terebrans Schiødte, 1866	"	G	s	hyg	2013
Bledius gallicus (Grav., 1806)	"	*	mh	hyg	2018
Stenus biguttatus (L., 1758)	"	*	mh	pxt	2013
Stenus comma comma Lec., 1863	"	*	mh	hyg	2014
Stenus providus providus Er., 1839	"	*	mh	hyg	2022
Stenus palposus Zett., 1838	"	3	SS	hyg	2014
Stenus canaliculatus Gyll., 1827	"	*	mh	hyg	2014
Stenus latifrons Er., 1839	"	*	mh	hyg	2022
Stenus tarsalis Ljungh, 1810	"	*	mh	hyg	2018
Stenus bohemicus Mach., 1947	"	*	s	hyg	2013
Stenus binotatus Ljungh, 1804	"	*	mh	hyg	2013
Stenus nitidiusculus nitidiusculus Steph., 1833	"	V	s	hyg	2022
Stenus bifoveolatus Gyll., 1827	"	*	mh	hyg	2022
Euaesthetus ruficapillus LACORD., 1835	"	*	mh	hyg	2022
Euaesthetus laeviusculus Mannerh., 1844	"	*	s	hyg	2022
Paederus fuscipes Curtis, 1826	"	*	s	hyg	2019
Rugilus angustatus (Geoffr., 1785)	"	*	mh	hyg	2018
Medon piceus (Kr., 1858)	"	*	mh	pxt	2018
Lithocharis nigriceps Kr., 1859	"	*	mh	eur	2018
Scopaeus laevigatus (Gyll., 1827)	"	*	s	hyg	2019
Tetartopeus terminatus Grav., 1802	"	*	mh	hyg	2019
Tetartopeus rufonitidus (Rtt., 1909)	"	V	s	hyg	2019
Tetartopeus quadratus (PAYK., 1789)	"	*	s	hyg	2019
Lathrobium elongatum (L., 1767)	"	*	s	hyg	2018
Lathrobium geminum Kr., 1857	"	*	mh	hyg	2018
Bisnius subuliformis (Grav., 1802)	"	*	s	xyl	2018
Ontholestes tessellatus (Geoffr., 1785)	"	*	mh	eur	2019
Ocypus fuscatus (Grav., 1802)	"	V	s	eur	1988
Quedius dilatatus (F., 1787)	"	*	S	xyl	2018
Quedius maurorufus (Grav., 1806)	"	*	mh	hyg	2022
Myllaena dubia (Grav., 1806)	"	*	S	hyg	2021

Art	RLN	RLD	Н	Cluster	1. Nw.
Myllaena intermedia Er., 1837	"	*	mh	hyg	2021
Myllaena infuscata Kr., 1853	"	*	SS	hyg	2022
Euryusa castanoptera Kr., 1856	"	*	s	xyl	2021
Myrmecocephalus concinnus (Er., 1839)	"	*	s	eur	2020
Tachyusa concinna Heer, 1839	"	D	s	hyg	2013
Thinonoma atra (Grav., 1806)	"	*	mh	hyg	2013
Atheta harwoodi Will., 1930	"	*	mh	eur	2018
Alianta incana (Er., 1837)	"	*	s	hyg	2014
Pselaphidae (Palpenkäfer, Staphylinidae part.)					
Rybaxis longicornis (Leach, 1817)	"	**	mh	hyg	2021
Fagniezia impressa (PANZER, 1803)	"	*	s	hyg	2021
Pselaphaulax dresdensis (Herbst, 1791)	"	G	es	hyg	2021
Lycidae (Rotdeckenkäfer)					
Lygistopterus sanguineus (L., 1758)	"	V	mh	xyl	2018
Lampyridae (Leuchtkäfer)					
Lampyris noctiluca (L., 1758)	"	*	s	eur	2022
Cantharidae (Weichkäfer)					
Cantharis flavilabris Fallén, 1807	"	*	mh	hyg	2018
Cantharis paradoxa Hicker, 1960	"	3	SS	sil	2020
Cantharis cryptica Ashe, 1947	"	*	mh	sil	2018
Cantharis pallida Goeze, 1777	"	*	mh	eur	2018
Rhagonycha testacea (L., 1758)	"	*	mh	sil	2014
Rhagonycha gallica Pic, 1923	"	*	mh	sil	2018
Silis ruficollis (F., 1775)	"	V	S	hyg	2021
Malthinus flaveolus (Herbst, 1786)	"	*	mh	xyl	2014
Malachiidae (Zipfelkäfer)					
Charopus flavipes (PAYK., 1798)	"	*	mh	eur	2014
Anthocomus rufus (Herbst, 1784)	"	*	mh	hyg	2021
Anthocomus fasciatus (L., 1758)	"	*	mh	eur	2021
Cerapheles terminatus (Ménétr., 1832)	"	V	mh	hyg	2021
Axinotarsus marginalis (LAP., 1840)	"	*	mh	eur	2014

Art	RLN	RLD	Н	Cluster	1. Nw.
Dasytidae (Wollhaarkäfer)					
Dasytes caeruleus (DeGeer, 1774)	"	*	mh	xyl	2014
Dolichosoma lineare (Rossi, 1794)	"	*	mh	pxt	2014
Lymexylidae (Werftkäfer)					
Elateroides dermestoides (L., 1761)	"	*	mh	xyl	2018
Elateridae (Schnellkäfer)					
Ampedus pomorum (Herbst, 1784)	"	*	mh	xyl	2018
Ampedus nigroflavus (Goeze, 1777)	"	3	s	xyl	2018
Ampedus nigrinus (Herbst, 1784)	"	*	S	xyl	2021
Ectinus aterrimus (L., 1761)	"	*	mh	eur	2018
Adrastus pallens (F., 1792)	"	*	mh	eur	2018
Melanotus villosus (Geoffr., 1785)	"	*	mh	xyl	2018
Agrypnus murinus (L., 1758)	"	*	mh	pxt	2018
Actenicerus sjaelandicus (O. Müller, 1764)	"	V	mh	hyg	2018
Calambus bipustulatus (L., 1767)	"	V	s	xyl	2018
Hypoganus inunctus (Lacord., 1835)	"	V	mh	xyl	2021
Denticollis linearis (L., 1758)	"	*	mh	xyl	2021
Pheletes aeneoniger (DeGeer, 1774)	"	*	S	pxt	2018
Dicronychus cinereus (Herbst, 1784)	"	*	mh	pxt	2021
Eucnemidae (Kamm-, Dornhalskäfer)					
Hylis foveicollis (C. Thoms., 1874)	"	V	S	xyl	2018
Buprestidae (Prachtkäfer)					
Anthaxia quadripunctata (L., 1758)	"	*	S	xyl	2021
Agrilus viridis (L., 1758)	"	*	mh	xyl	2020
Trachys minutus (L., 1758)	"	*	mh	eur	2018
Scirtidae (Jochkäfer, Sumpffieberkäfer)					
Elodes minutus (L., 1767)	*	*	mh	hyg	2018
Elodes tricuspis Nyholm, 1985	*	G	SS	hyg	2018
Odeles marginata (F., 1798)	3	*	S	hyg	2018
Microcara testacea (L., 1767)	*	*	mh	hyg	2021
Contacyphon pubescens (F., 1792)	*	*	S	hyg	2018
Scirtes hemisphaericus (L., 1758)	*	*	mh	hyg	2021

Art	RLN	RLD	Н	Cluster	1. Nw.
Dryopidae (Klauenkäfer)					
Dryops luridus (Er., 1847)	*	*	mh	aqu	2021
Dryops auriculatus (Geoffr., 1785)	3	*	S	aqu	2021
Heteroceridae (Sägekäfer)					
Heterocerus obsoletus Curtis, 1828	"	V	SS	hyg	2021
Augyles hispidulus (K1ESW., 1843)	"	G	mh	hyg	2019
Augyles intermedius (K1ESW., 1843)	"	G	S	hyg	2019
Dermestidae (Speckkäfer, Pelzkäfer)					
Attagenus pellio (L., 1758)	"	*	mh	eur	2018
Trogoderma glabrum (Herbst, 1783)	"	*	s	pxt	2018
Megatoma undata (L., 1758)	"	*	mh	xyl	2018
Ctesias serra (F., 1792)	"	*	s	sil	2018
Anthrenus museorum (L., 1761)	"	*	mh	eur	2018
Anthrenus fuscus Olivier, 1790	"	*	mh	pxt	2018
Nitidulidae (Glanzkäfer)					
Carpophilus marginellus Motsch., 1858	"	*	mh	eur	2020
Carpophilus hemipterus (L., 1758)	"	*	s	eur	2018
Pria dulcamarae (Scop., 1763)	"	*	s	eur	2021
Brassicogethes coeruleovirens (Förster, 1849)	"	V	mh	hyg	2014
Thymogethes gagathinus (Er., 1845)	"	*	SS	hyg	2016
Epuraea guttata (Olivier, 1811)	"	*	s	xyl	2019
Omosita colon (L., 1758)	"	*	mh	eur	2019
Soronia grisea (L., 1758)	"	*	mh	eur	2021
Pocadius ferrugineus (F., 1775)	"	*	mh	eur	2018
Thalycra fervida (Olivier, 1790)	"	*	mh	sil	2018
Cryptarcha strigata (F., 1787)	"	*	mh	xyl	2018
Cryptarcha undata (Olivier, 1790)	"	*	S	xyl	2018
Glischrochilus quadriguttatus (F., 1777)	"	*	S	xyl	2018
Glischrochilus quadripunctatus (L., 1758)	"	*	mh	xyl	2018
Kateretidae (Blüten-Glanzkäfer)					
Kateretes pedicularius (L., 1758)	"	*	mh	hyg	2019
Kateretes rufilabris (LATR., 1807)	"	V	mh	hyg	2021

Art	RLN	RLD	Н	Cluster	1. Nw.
Brachypterolus pulicarius (L., 1758)	"	*	mh	pxt	2014
Monotomidae (Rindenkäfer, Rindenglanzkäfer)					
Monotoma longicollis (Gyll., 1827)	"	*	mh	eur	2021
Cucujidae (Plattkäfer)					
Pediacus depressus (Herbst, 1797)	"	*	s	xyl	2019
Silvanidae (Halmplattkäfer)					
Silvanus unidentatus (Olivier, 1790)	"	*	mh	xyl	2019
Silvanus recticollis Rtt., 1876	"	/	ss	eur	2019
Psammoecus bipunctatus (F., 1792)	"	*	s	hyg	2022
Uleiota planatus (L., 1761)	"	*	mh	xyl	1988
Erotylidae (Pilzkäfer)					
Triplax russica (L., 1758)	"	*	mh	xyl	2021
Cryptophagidae (Schimmelkäfer)					
Telmatophilus typhae (FALLÉN, 1802)	"	*	mh	hyg	2019
Telmatophilus schonherrii (Gyll., 1808)	"	*	ss	hyg	2019
Cryptophagus quadridentatus (Mannerh., 1843)	"	*	mh	xyl	1988
Cryptophagus lycoperdi (Scop., 1763)	"	*	mh	sil	2019
Atomaria mesomela (Herbst, 1792)	"	*	s	hyg	2019
Ephistemus globulus (PAYK., 1798)	"	*	mh	eur	2018
Phalacridae (Glattkäfer)					
Phalacrus caricis Sturm, 1807	"	*	s	hyg	2019
Olibrus millefolii (Payk., 1800)	"	*	mh	pxt	2018
Stilbus testaceus (PANZER, 1797)	"	*	mh	hyg	2001
Stilbus oblongus (Er., 1845)	"	*	s	hyg	2019
Latridiidae (Moderkäfer)					
Enicmus fungicola С. Тномѕ., 1868	"	*	s	xyl	2018
Cartodere bifasciata (Rtt., 1877)	"	nb	mh	eur	2018
Mycetophagidae (Baumschwammkäfer)					
Litargus connexus (Geoffr., 1785)	"	*	mh	xyl	2018
Mycetophagus piceus (F., 1777)	"	V	S	xyl	2021
Mycetophagus decempunctatus F., 1801	"	2	SS	xyl	2021
Typhaea stercorea (L., 1758)	"	*	mh	eur	2018

Art	RLN	RLD	Н	Cluster	1. Nw.
Турhaea haagi Rтт., 1874	"	nb	mh	eur	2020
Zopheridae (Rindenkäfer)					
Synchita humeralis (F., 1792)	"	*	mh	xyl	2018
Bitoma crenata (F., 1775)	"	*	mh	xyl	2019
Colydium elongatum (F., 1787)	"	3	S	xyl	2021
Corylophidae (Faulholzkäfer)					
Corylophus cassidoides (Marsh., 1802)	"	*	S	hyg	2022
Coccinellidae (Marienkäfer)					
Coccidula scutellata (Herbst, 1783)	"	*	S	hyg	2021
Scymnus schmidti Fürsch, 1958	"	*	mh	pxt	2019
Scymnus haemorrhoidalis Herbst, 1797	"	*	mh	eur	2021
Hyperaspis campestris (Herbst, 1783)	"	D	S	pxt	2020
Hippodamia tredecimpunctata (L., 1758)	"	*	mh	hyg	2021
Hippodamia variegata (Goeze, 1777)	"	*	S	pxt	2018
Anisosticta novemdecimpunctata (L., 1758)	"	*	mh	hyg	2021
Coccinella quinquepunctata L., 1758	"	*	mh	eur	2021
Harmonia quadripunctata (Pont., 1763)	"	*	S	sil	2018
Myrrha octodecimguttata (L., 1758)	"	*	mh	sil	2018
Calvia decemguttata (L., 1767)	"	*	mh	eur	2018
Calvia quatuordecimguttata (L., 1758)	"	*	mh	eur	2018
Anatis ocellata (L., 1758)	"	*	mh	eur	2019
Halyzia sedecimguttata (L., 1758)	"	*	mh	sil	2014
Sphindidae (Staubpilzkäfer)					
Sphindus dubius (Gyll., 1808)	"	*	mh	xyl	2021
Bostrichidae (Bohrkäfer)					
Lyctus brunneus (Sтерн., 1830)	"	nb	SS	xyl	2021
Lyctus cavicollis Lec., 1866	"	nb	SS	xyl	2020
Anobiidae (Pochkäfer, Ptinidae part.)					
Ernobius abietinus (Gyll., 1808)	"	*	S	xyl	1988
Ernobius abietis (F., 1792)	"	*	mh	xyl	2020
Ernobius angusticollis (RATZ., 1837)	"	*	S	xyl	2021
Stegobium paniceum (L., 1758)	"	*	mh	syn	2020

Art	RLN	RLD	Н	Cluster	1. Nw.
Cacotemnus rufipes (F., 1792)	"	3	SS	xyl	2014
Ptilinus pectinicornis (L., 1758)	"	*	mh	xyl	2018
Xyletinus pectinatus (F., 1792)	"	3	S	xyl	2018
Dorcatoma flavicornis (F., 1792)	"	3	S	xyl	2018
Ptinidae (Diebskäfer)					
Ptinus sexpunctatus PANZER, 1789	"	*	S	xyl	2018
Oedemeridae (Scheinbockkäfer)					
Oedemera nobilis (Scop., 1763)	"	*	mh	pxt	2018
Oedemera virescens (L., 1767)	"	*	mh	pxt	2018
Oedemera lurida (Marsh., 1802)	"	*	mh	pxt	2019
Salpingidae (Scheinrüssler)					
Lissodema cursor (Gyll., 1813)	"	*	s	xyl	2019
Salpingus ruficollis (L., 1761)	"	*	mh	xyl	2018
Pyrochroidae (Feuerkäfer)					
Schizotus pectinicornis (L., 1758)	"	*	mh	xyl	2020
Scraptiidae (Seidenkäfer)					
Anaspis fasciata (Forster, 1771)	"	*	s	xyl	2018
Aderidae (Mulmkäfer)					
Aderus populneus (Creutzer, 1796)	"	*	mh	xyl	2021
Anidorus nigrinus (Germar, 1842)	"	*	mh	xyl	2018
Anthicidae (Halskäfer)					
Notoxus monoceros (L., 1760)	"	*	mh	eur	2019
Anthicus flavipes (PANZER, 1796)	"	V	mh	pxt	2019
Anthicus bimaculatus (Ill., 1801)	"	3	S	pxt	2019
Stricticomus tobias (Mars., 1879)	"	*	s	eur	2019
Mordellidae (Stachelkäfer)					
Tomoxia bucephala A. Costa, 1854	"	*	S	xyl	2021
Mordella holomelaena Apflb., 1914	"	*	mh	xyl	2014
Mordellistena bicoloripilosa Erm., 1967	"	*	mh	pxt	2014
Mordellochroa abdominalis (F., 1775)	"	*	mh	xyl	2020
Melandryidae (Düsterkäfer)					
Conopalpus testaceus (OLIVIER, 1790)	"	*	mh	xyl	2018

Art	RLN	RLD	Н	Cluster	1. Nw.
Tetratomidae (Keulen-Düsterkäfer)					
Hallomenus binotatus (Quensel, 1790)	"	*	S	xyl	2021
Alleculidae (Pflanzenkäfer, Tenebrionidae part.)					
Allecula morio (F., 1787)	"	3	S	xyl	2020
Prionychus ater (F., 1775)	"	V	s	xyl	2021
Mycetochara maura (F., 1792)	"	*	s	xyl	2020
Tenebrionidae (Schwarzkäfer)					
Bolitophagus reticulatus (L., 1767)	"	3	mh	xyl	2021
Eledona agricola (Herbst, 1783)	"	*	S	xyl	2021
Diaperis boleti (L., 1758)	"	*	mh	xyl	2021
Platydema violacea (F., 1790)	"	*	s	xyl	2018
Pentaphyllus testaceus (Hellwig, 1792)	"	3	s	xyl	2020
Corticeus bicolor (Olivier, 1790)	"	3	s	xyl	2021
Corticeus linearis F., 1790	"	*	mh	xyl	2021
Tribolium castaneum (Herbst, 1797)	"	*	mh	syn	2021
Alphitobius diaperinus (PANZER, 1796)	"	*	s	syn	2020
Diaclina fagi (PANZER, 1799)	"	*	s	xyl	2020
Latheticus oryzae WATH., 1880	"	*	s	syn	2021
Geotrupidae (Mistkäfer)					
Geotrupes spiniger (Marsh., 1802)	"	*	s	eur	2019
Scarabaeidae (Blatthornkäfer)					
Acrossus rufipes (L., 1758)	"	*	mh	eur	2020
Serica brunnea (L., 1758)	"	*	mh	pxt	2021
Amphimallon solstitiale solstitiale (L., 1758)	"	*	mh	eur	2019
Melolontha melolontha (L., 1758)	"	*	s	eur	2021
Anomala dubia (Scop., 1763)	"	*	mh	pxt	2018
Hoplia philanthus (Füessly, 1775)	"	*	s	pxt	2021
Oryctes nasicornis nasicornis (L., 1758)	"	*	s	xyl	2021
Cerambycidae (Bockkäfer)					
Spondylis buprestoides (L., 1758)	"	*	mh	xyl	2020
Arhopalus rusticus (L., 1758)	"	*	mh	xyl	2020
Grammoptera ustulata (Schaller, 1783)	"	*	S	xyl	2018

Art	RLN	RLD	Н	Cluster	1. Nw.
Pseudovadonia livida (F., 1777)	"	*	mh	eur	2014
Pachytodes cerambyciformis (Schrank, 1781)	"	*	mh	xyl	2020
Pedostrangalia revestita (L., 1767)	"	3	SS	xyl	2021
Stenurella nigra (L., 1758)	"	*	mh	xyl	2018
Obrium cantharinum (L., 1767)	"	V	SS	xyl	2019
Obrium brunneum (F., 1792)	"	*	mh	xyl	2020
Aromia moschata (L., 1758)	"	V	s	xyl	2020
Phymatodes testaceus (L., 1758)	"	*	mh	xyl	2020
Clytus arietis (L., 1758)	"	*	mh	xyl	2014
Plagionotus detritus (L., 1758)	"	V	ss	xyl	2019
Pogonocherus hispidus (L., 1758)	"	*	mh	xyl	2020
Leiopus nebulosus (L., 1758)	"	****	mh	xyl	2014
Leiopus linnei WALL.Ny.K., 2009	/	***	s	xyl	2021
Agapanthia villosoviridescens (DeGeer, 1775)	"	*	mh	eur	2018
Saperda populnea (L., 1758)	"	*	s	xyl	2020
Saperda scalaris (L., 1758)	"	*	s	xyl	2018
Tetrops praeustus (L., 1758)	"	/	mh	xyl	2020
Chrysomelidae (Blattkäfer)					
Donacia clavipes F., 1792	"	3	s	hyg	2021
Donacia versicolorea (Вrahm, 1790)	"	V	s	hyg	2022
Donacia semicuprea PANZER, 1796	"	*	mh	hyg	2021
Donacia marginata Hoppe, 1795	"	V	s	hyg	2018
Donacia thalassina Germar, 1811	"	V	s	hyg	2021
Donacia vulgaris Zsch., 1788	"	*	s	hyg	2021
Donacia simplex F., 1775	"	V	ss	hyg	2021
Donacia cinerea Herbst, 1784	"	*	s	hyg	2018
Plateumaris sericea (L., 1758)	"	*	mh	hyg	2021
Plateumaris consimilis (Schrank, 1781)	"	*	s	hyg	2021
Lema cyanella (L., 1758)	"	3	es	eur	2018
Oulema septentrionis Weise, 1880	"	1	es	hyg	1987
Oulema melanopus (L., 1758)	"	*	mh	eur	2018
Crioceris duodecimpunctata (L., 1758)	"	*	mh	eur	2013

Art	RLN	RLD	Н	Cluster	1. Nw.
Crioceris asparagi (L., 1758)	"	*	mh	eur	2020
Cryptocephalus coryli (L., 1758)	"	3	es	eur	2020
Cryptocephalus nitidus (L., 1758)	"	*	mh	eur	2020
Cryptocephalus parvulus O. Müller, 1776	"	3	S	hyg	2020
Cryptocephalus decemmaculatus (L., 1758)	"	3	s	hyg	2021
Cryptocephalus labiatus (L., 1760)	"	*	mh	eur	2021
Cryptocephalus pusillus F., 1777	"	*	mh	eur	2021
Cryptocephalus rufipes (Goeze, 1777)	"	*	s	eur	2012
Chrysolina herbacea (Duft., 1825)	"	*	s	hyg	2021
Chrysolina polita (L., 1758)	"	*	mh	eur	2021
Chrysolina varians (Schaller, 1783)	"	*	mh	eur	2018
Gastrophysa polygoni (L., 1758)	"	*	mh	eur	2013
Phaedon cochleariae (F., 1792)	"	*	mh	hyg	2021
Phaedon armoraciae (L., 1758)	"	*	mh	hyg	2021
Prasocuris phellandrii (L., 1758)	"	*	s	hyg	2014
Prasocuris marginella (L., 1758)	"	*	mh	hyg	2021
Plagiodera versicolora (Laich., 1781)	"	*	mh	hyg	2014
Chrysomela populi L., 1758	"	*	mh	eur	2018
Chrysomela saliceti (Weise, 1884)	"	V	s	hyg	2021
Plagiosterna aenea (L., 1758)	"	*	mh	hyg	2020
Gonioctena viminalis (L., 1758)	"	*	s	hyg	2020
Gonioctena quinquepunctata (F., 1787)	"	*	mh	eur	2019
Phratora vulgatissima (L., 1758)	"	*	mh	hyg	2018
Phratora laticollis (Suffr., 1851)	"	*	mh	eur	2018
Phratora vitellinae (L., 1758)	"	*	mh	eur	2014
Galerucella nymphaeae (L., 1758)	"	*	s	hyg	2019
Galerucella aquatica (Geoffr., 1785)	"	**	mh	hyg	2014
Galerucella grisescens (Joannis, 1866)	"	*	s	hyg	2022
Galerucella lineola (F., 1781)	"	*	mh	hyg	2020
Pyrrhalta viburni (Payk., 1799)	"	*	s	eur	2013
Phyllobrotica quadrimaculata (L., 1758)	"	*	mh	hyg	2021
Luperus longicornis (F., 1781)	"	*	mh	eur	2021

Art	RLN	RLD	Н	Cluster	1. Nw.
Phyllotreta nemorum (L., 1758)	"	*	S	eur	2021
Phyllotreta ochripes (Curtis, 1837)	ш	*	mh	hyg	2021
Aphthona lutescens (Gyll, 1808)	"	*	SS	hyg	2018
Aphthona euphorbiae (Schrank, 1781)	"	*	mh	pxt	2018
Aphthona nonstriata (Goeze, 1777)	"	*	mh	hyg	2019
Longitarsus holsaticus (L., 1758)	ш	3	SS	hyg	2013
Altica lythri Aubé, 1843	"	*	mh	hyg	2018
Altica quercetorum quercetorum Foudras, 1861	"	**	S	sil	2018
Batophila rubi (PAYK., 1799)	"	*	mh	pxt	2013
Lythraria salicariae (PAYK., 1800)	"	*	mh	hyg	2019
Neocrepidodera transversa (Marsh., 1802)	"	*	mh	eur	2018
Hippuriphila modeeri (L., 1760)	"	*	mh	hyg	2019
Crepidodera fulvicornis (F., 1792)	"	*	mh	eur	2020
Epitrix pubescens (Kocн, 1803)	"	*	mh	hyg	2018
Chaetocnema picipes Steph., 1831	"	*	mh	eur	2019
Chaetocnema aerosa (Letz., 1847)	"	3	SS	hyg	2021
Dibolia occultans (Косн, 1803)	"	2	es	hyg	2013
Psylliodes affinis (PAYK., 1799)	"	*	mh	hyg	2014
Psylliodes dulcamarae Косн, 1803	"	*	mh	hyg	2018
Hispa atra L., 1767	"	*	mh	pxt	2021
Cassida viridis L., 1758	"	*	mh	eur	2021
Cassida nebulosa L., 1758	"	*	mh	eur	2021
Cassida flaveola Thunb., 1794	"	*	mh	eur	2021
Cassida vibex L., 1767	"	*	mh	eur	2018
Cassida vittata VILLERS, 1789	"	*	S	eur	2013
Megalopodidae (Blattkäfer part.)					
Zeugophora subspinosa (F., 1781)	"	*	mh	eur	2018
Anthribidae (Breitrüssler)					
Platystomos albinus (L., 1758)	"	*	mh	xyl	2019
Nemonychidae (Kiefernrüssler)					
Cimberis attelaboides (F., 1787)	"	*	S	pxt	2020

Art	RLN	RLD	Н	Cluster	1. Nw.
Rhynchitidae (Triebstecher, Trichterwickler)					
Temnocerus nanus (PAYK., 1792)	"	*	mh	eur	2020
Temnocerus coeruleus (F., 1798)	"	*	mh	eur	1987
Temnocerus longiceps (С. Тномs., 1888)	"	*	mh	eur	2018
Lasiorhynchites sericeus (Herbst, 1797)	"	*	s	sil	2021
Neocoenorrhinus germanicus (Herbst, 1797)	"	*	mh	eur	2018
Involvulus cupreus (L., 1758)	"	*	mh	eur	2019
Byctiscus betulae (L., 1758)	"	*	mh	eur	2021
Deporaus betulae (L., 1758)	"	*	mh	eur	2019
Attelabidae (Blattroller)				İ	
Apoderus coryli (L., 1758)	"	*	s	eur	2020
Apionidae (Spitzmausrüssler)				İ	
Ceratapion onopordi (Kirby, 1808)	"	*	mh	eur	2018
Perapion hydrolapathi (Marsh., 1802)	"	*	mh	hyg	2014
Ischnopterapion loti (KIRBY, 1808)	"	*	mh	pxt	2013
Ischnopterapion modestum (GERMAR, 1817)	"	*	S	hyg	2013
Cyanapion gyllenhalii Kırby, 1808	"	V	mh	eur	2014
Oxystoma cerdo (Gerst., 1854)	"	*	mh	eur	2021
Eutrichapion viciae (PAYK., 1800)	"	*	mh	eur	2014
Eutrichapion ervi (Kirby, 1808)	"	*	mh	eur	2014
Nanophyidae (Zwergrüssler)					
Nanophyes marmoratus (Goeze, 1777)	"	*	mh	hyg	2018
Nanophyes brevis Вон., 1845	"	*	es	hyg	2019
Nanomimus circumscriptus (Aubé, 1864)	"	2	ss	hyg	2021
Microon sahlbergi (C. Sahlb., 1835)	"	2	es	hyg	2021
Curculionidae (Rüsselkäfer)					
Phyllobius arborator (Herbst, 1797)	"	*	s	eur	2014
Philopedon plagiatum (Schaller, 1783)	"	*	mh	pxt	2021
Sitona humeralis Steph., 1831	"	*	s	eur	2016
Charagmus gressorius (F., 1792)	"	*	mh	pxt	2018
Charagmus griseus (F., 1775)	"	*	mh	pxt	2013
Coelositona cambricus (Steph., 1831)	"	V	S	hyg	2013

Art	RLN	RLD	Н	Cluster	1. Nw.
Chlorophanus viridis viridis (L., 1758)	"	*	mh	eur	2018
Lixus iridis Olivier, 1807	"	*	s	hyg	2021
Larinus turbinatus Gyll., 1835	"	*	mh	pxt	2020
Rhinocyllus conicus (Fröl., 1792)	"	*	mh	pxt	2021
Bagous tubulus CALD.O'Br., 1994	"	3	s	hyg	2021
Bagous subcarinatus Gyll., 1836	"	V	s	hyg	2021
Bagous puncticollis Boh., 1845	"	2	ss	hyg	2021
Bagous glabrirostris (Herbst, 1795)	"	3	SS	hyg	2020
Bagous alismatis (Marsh., 1802)	"	V	s	hyg	1987
Dorytomus tremulae (F., 1787)	"	*	s	eur	1987
Dorytomus tortrix (L., 1760)	"	*	mh	eur	1987
Dorytomus dejeani Faust, 1883	"	*	s	eur	2022
Dorytomus taeniatus (F., 1781)	"	*	mh	eur	2021
Dorytomus salicis Walton, 1851	"	3	s	eur	2020
Dorytomus majalis (PAYK., 1792)	"	3	ss	hyg	2018
Dorytomus melanophthalmus (PAYK., 1792)	"	*	mh	eur	2020
Dorytomus rufatus (Bedel, 1888)	"	*	mh	eur	2020
Acalyptus carpini (F., 1792)	"	*	mh	hyg	2020
Acalyptus sericeus Gyll., 1835	"	3	es	hyg	2020
Ellescus scanicus (PAYK., 1792)	"	*	mh	hyg	2020
Ellescus bipunctatus (L., 1758)	"	*	mh	hyg	2020
Anthonomus phyllocola (Herbst, 1795)	"	*	mh	sil	2014
Curculio betulae (Steph., 1831)	"	V	s	eur	2014
Magdalis ruficornis (L., 1758)	"	*	mh	xyl	2020
Magdalis flavicornis (Gyll., 1836)	"	*	mh	xyl	2018
Magdalis cerasi (L., 1758)	"	*	mh	xyl	2020
Magdalis carbonaria (L., 1758)	"	*	s	xyl	2020
Magdalis linearis (Gyll., 1827)	"	*	mh	xyl	2012
Hypera conmaculata (Herbst, 1795)	"	V	s	hyg	2021
Hypera miles (PAYK., 1792)	"	*	mh	pxt	2014
Cryptorhynchus lapathi (L., 1758)	"	*	mh	xyl	2020
Limnobaris dolorosa (Goeze, 1777)	"	*	mh	hyg	2022

Art	RLN	RLD	Н	Cluster	1. Nw.
Phytobius leucogaster (Marsh., 1802)	"	V	s	hyg	2021
Pelenomus commari (PANZER, 1795)	"	*	s	hyg	2014
Pelenomus waltoni (Вон., 1843)	"	*	s	hyg	2021
Pelenomus quadrituberculatus (F., 1787)	"	*	mh	hyg	1987
Pelenomus olssoni (Israelson, 1972)	"	2	s	hyg	2019
Pelenomus quadricorniger (Colonn., 1986)	"	3	s	hyg	2013
Rhinoncus perpendicularis (Reich, 1797)	"	*	mh	eur	2019
Rhinoncus inconspectus (Herbst, 1795)	"	*	mh	hyg	2018
Rhinoncus bruchoides (Herbst, 1784)	"	*	mh	pxt	2013
Tapinotus sellatus (F., 1794)	"	*	s	hyg	2016
Coeliodinus rubicundus (Herbst, 1795)	"	*	mh	eur	2020
Ceutorhynchus atomus Вон., 1845	"	*	mh	pxt	2018
Ceutorhynchus napi Gyll., 1837	"	*	s	pxt	2018
Ceutorhynchus querceti (Gyll., 1813)	"	3	s	hyg	2021
Ceutorhynchus pumilio (Gyll., 1827)	"	V	mh	pxt	2021
Glocianus distinctus (C. Brisout, 1870)	"	*	mh	eur	2018
Glocianus punctiger (C. Sahlb., 1835)	"	*	mh	eur	2018
Datonychus arquata (Herbst, 1795)	"	3	s	hyg	2018
Datonychus melanostictus (Marsh., 1802)	"	*	mh	hyg	2021
Mecinus labilis (Herbst, 1795)	"	*	mh	pxt	2021
Rhinusa tetra (F., 1792)	"	*	s	pxt	2014
Rhinusa antirrhini (Payk., 1800)	"	*	mh	pxt	2021
Miarus campanulae (L., 1767)	"	*	s	pxt	1987
Cionus tuberculosus (Scop., 1763)	"	*	mh	eur	2014
Cionus hortulanus (Geoffr., 1785)	"	*	mh	pxt	2014
Tachyerges stigma (GERMAR, 1821)	"	*	mh	eur	2019
Tachyerges pseudostigma (TEMP., 1982)	"	*	ss	hyg	2014
Tachyerges salicis (L., 1758)	"	*	s	hyg	2018
Isochnus sequensi (Stierlin, 1894)	"	*	mh	hyg	1987
Orchestes testaceus (O. Müller, 1776)	"	*	s	hyg	2014
Orchestes rusci (HERBST, 1795)	"	*	mh	eur	2020
Rhamphus pulicarius (Herbst, 1795)	"	*	mh	eur	2020

Art	RLN	RLD	Н	Cluster	1. Nw.
Erirhinidae (Rüsselkäfer part.)					
Stenopelmus rufinasus Gyll., 1835	· · ·	*	es	hyg	2019
Tanysphyrus lemnae (PAYK., 1792)	· · ·	*	mh	hyg	2022
Notaris scirpi (F., 1792)	· · ·	V	s	hyg	2019
Notaris acridulus (L., 1758)	· · ·	*	mh	hyg	2021
Thryogenes nereis (PAYK., 1800)	· ·	V	s	hyg	2021
Grypus brunnirostris (F., 1792)	· ·	3	s	hyg	2014